

DATABASES OF USER
INFORMATION
Data models for the SmartH2O platform

SmartH2O

Project FP7-ICT-619172

Deliverable D3.1 WP3

Deliverable
Version 3.1 – July 31 2015

Document. ref.:
D31.POLIMI.WP3.V3.1

SmartH2O – Databases of user information Page 2 D3.1 Version 3.1

Programme Name: ICT
Project Number: 619172
Project Title: SmartH2O
Partners: .. Coordinator: SUPSI

Contractors: POLMI, UoM, SETMOB, EIPCM,
TWUL, SES, MOONSUB

Document Number: smarth2o. D31.POLIMI.WP3.V2.0
Work-Package: WP3
Deliverable Type: Document
Contractual Date of Delivery: 30 September 2014
Actual Date of Revision: 31 July 2015
Title of Document: Databases of user information
Author(s): Elisa Quintarelli, Dario Piga, Andrea Cominola,

Matteo Giuliani, Andrea Castelletti, Andrea
Emilio Rizzoli, Alessandro Facchini, Piero
Fraternali, Chiara Pasini, Giorgia Baroffio,
Ricardo Wissman-Alves, Mark Holt, Marco
Bertocchi, Luigi Caldararu, Sever Calit.

Approval of this report Approved by Project Coordinator

Summary of this report: Literature review on past residential water end use studies

that have been conducted in the last years. Based on the
analysis of past water end use studies at the household
level, a tentative set of the main determinants influencing
water consumption have been identified and a set of
variables which should be included in the SmartH2O
database has been determined. This set of variable will be
gradually enriched based on the interactions with water
utilities and users. The structure of the SmartH2O database
has been defined in terms of Entity-Relationship models,
and different services allowing the interaction between
users, smart meter infrastructure and SmartH2O database
are proposed.

History: ..

Keyword List: Databases, Platform Model, User information.

Availability This report is confidential

This work is licensed under a Creative Commons Attribution-NonCommercial-

ShareAlike 3.0 Unported License.
This work is partially funded by the EU under grant ICT-FP7-619172

SmartH2O – Databases of user information Page 3 D3.1 Version 3.1

Document History

Version Date Reason Revised by
1.1 30/4/2015 Initial document, based on

v1.0, to start with the revision
to incorporate the comments
of the expert reviewers after
the first review meeting

A.E. Rizzoli

2.0 4/5/2015 Alignment of the database
conceptual model to the last
revisions; insertion of the SQL
code for generating the
relational schema.

Piero Fraternali,
Chiara Pasini,
Giorgia Baroffio

3.0 27/7/2015 A new section 4.4 has been
added. It contains the
description of the data
assimilation procedure and the
SMDMC component.

Sever Calit, Luigi
Caldararu, A.E.
Rizzoli

3.1 28/7/2015 New Section 6 Data
Management Tools has been
added. Final quality check.

P. Fraternali, A.E.
Rizzoli

SmartH2O – Databases of user information Page 4 D3.1 Version 3.1

Disclaimer
This document contains confidential information in the form of the SmartH2O
project findings, work and products and its use is strictly regulated by the
SmartH2O Consortium Agreement and by Contract no. FP7- ICT-619172.

Neither the SmartH2O Consortium nor any of its officers, employees or agents
shall be responsible or liable in negligence or otherwise howsoever in respect of
any inaccuracy or omission herein.

The research leading to these results has received funding from the
European Union Seventh Framework Programme (FP7-ICT-2013-11) under
grant agreement n° 619172.

The contents of this document are the sole responsibility of the SmartH2O
consortium and can in no way be taken to reflect the views of the European Union.

SmartH2O – Databases of user information Page 5 D3.1 Version 3.1

Table of Contents
EXECUTIVE SUMMARY 7	

1.	
 INTRODUCTION 8	

2.	
 REVIEW OF THE STATE OF THE ART 10	

2.1	
 USERS’ WATER CONSUMPTION AND PSYCHOGRAPHICS DATASETS 10	

2.2	
 METEOROLOGICAL DATABASES 14	

3.	
 DATABASE STRUCTURE 16	

3.1	
 PLATFORM DATA MODEL DESCRIPTION 16	

3.2	
 DATA REQUIREMENTS 16	

3.3	
 CONSUMER DATA MODEL 22	

3.3.1	
 Description of the main entities of the Consumer data model 22	

3.4	
 USER GAMING MODEL 24	

3.4.2	
 Game Platform Data Model 27	

4.	
 DATABASE PROTOTYPE 29	

4.1	
 EXAMPLES OF ENDPOINT AND ACCESS PROCEDURE DESCRIPTION 29	

4.2	
 PROTOTYPE POPULATION 32	

4.3	
 DATA ACQUISITION MODEL DESCRIPTION 32	

5.	
 DATA GOVERNANCE POLICY 33	

5.1	
 ETHICAL ISSUES RELATED TO PRIVACY 33	

5.2	
 ETHICAL ISSUES RELATED TO THE INVOLVEMENT OF USERS 33	

5.3	
 THE SMARTH2O DATA GOVERNANCE POLICY 34	

6.	
 DATA MANAGEMENT TOOLS 36	

6.1	
 SMART METER DATA MANAGEMENT COMPONENT – SMDMC 36	

6.1.1	
 Role and Functionality 36	

6.1.2	
 System Flow 36	

6.1.3	
 Architecture and Deployment 37	

6.1.4	
 Data Security 38	

6.2	
 WEBRATIO DOMAIN MODELER 38	

6.2.1	
 Database design 39	

6.2.2	
 Data mapping and database creation 41	

7.	
 CONCLUSIONS AND FUTURE WORK 44	

8.	
 APPENDIX DATABASE CREATION SQL CODE 45	

8.1	
 CONSUMER PORTAL SUBSCHEMA 45	

8.2	
 GAMES PLATFORM SUBSCHEMA 58	

8.3	
 GAMIFICATION ENGINE SUBSCHEMA 66	

SmartH2O – Databases of user information Page 7 D3.1 Version 3.1

Executive Summary

The main purpose of this deliverable is to design a software repository for storing all types of
user related data, from water consumption data, to user psychographic data, down to the
user interactions with the SmartH2O platform.

• Section 2 provides a literature review on past residential water end use studies,
which were conducted in the last years. Based on the analysis of these water end
use studies at the household level, a preliminary set of the main determinants
influencing water consumption are identified, eventually determining a set of
potentially relevant variables to be included in the SmartH2O database, such as end-
user profile data, hydroclimatic data, socio-economic data. This set of variable will be
gradually enriched based on the interactions with water utilities and users.

• Section 3 then details the structure of the SmartH2O database, defined in terms of
Entity-Relationship models, along with a list of different services allowing the
interaction between the users, the smart meter infrastructure, and the SmartH2O
database. The database structure has been deliberately kept open and flexible to
accommodate additional information coming from the interaction with the water
utilities and the end users.

• Section 4 describes the database implementation, in terms of the database storage
technology employed, the access endpoints and the data acquisition procedures.

• Section 5 describes the data governance policy that will be adopted in the SmartH2O
project.

• Section 6 contains an overall description of the data management tools, more
specifically the data assimilation component and the domain modller used to design
and create the database.

• An appendix gives the complete source code for generating the SmatH20 database,
divided in the principal areas that constitute the data model: the consumer portal the
game platform, and the gamification engine database subschemas.

SmartH2O – Databases of user information Page 8 D3.1 Version 3.1

1. Introduction
Individual and collective behavioural responses to different water conservation policies acting
on the demand side of residential water consumption (the so called Water Demand
Management Strategies, WDMS) might significantly vary within the same urban context
depending on economic drivers as well as socio-psychological determinants. The SmartH2O
project aims at providing water utilities, municipalities, and citizens, with an ICT-enabled
platform to design, develop and implement improved WDMS. They will rely on a shared
understanding of the water users’ behaviour and motivations to reduce water consumption,
without compromising the quality of life of the users. SmartH2O builds a bi-directional
communication stream between citizens and the water utility: in one direction, user
behavioural data are collected by water utilities through smart meters and an online social
participation application (social game); in the other, awareness campaigns and price signals
are delivered to users through the same app, thus informing them on how to save water and
money.

Within the SmartH2O project, Work Package 3 aims at:
• collecting historical and real time water consumption data both at high resolution (i.e., from

smart meter infrastructures) and at low resolutions (i.e., billed data);
• identifying water end-use patterns;
• analysing and classifying the consumers’ behaviors;
• identifying individual consumer behavioural models;
• developing models of consumers’ elasticity to incentives, to awareness campaigns and to

social pressure at a single-household level. It is worth mentioning that the final user
models should also be able to describe the future consumers’ behavior in face of water
price changes. The latter is the main goal of Work Package 5 (“Saving water by dynamic
water pricing”), where econometric models of water demand under new pricing policies
will be developed, and eventually integrated with the consumer behavioural models
developed in WP3.

• integrating the individual consumer models into a multi-users model exploiting agent-
based modeling platforms.

In order to fulfill the WP3’s objectives, it is essential to:
• understand which user and household attributes (e.g., number of occupants in a house,

garden area, etc.) and exogenous variables (e.g., external temperature, rainfall, etc.)
influence water consumption at the household level;

• evaluate the impact of policy actions (awareness campaigns, incentives and social
pressure) on the water users’ behavior.

• decide how the water utilities taking part in the SmartH2O project (i.e., TWUL and SES)
will transfer water consumption data to the SmartH2O platform;

• evaluate how accurate the meter readings should be (in terms of frequency and
resolution) to build reliable models of water consumers’ behavior.

• understand which actions (e.g., questionnaires, social games) should be taken in order to
gather psychographics data on the water consumers.

• organize the gathered information in a database and develop automated procedures to
update its content with online meter readings. The developed database should also
include data that will be used in WP5 for developing econometric models of water demand
under pricing policies.

Starting from a literature review on the residential water end use studies conducted in the last
twenty years, relevant insights to face the key steps mentioned above were obtained.
Furthermore, taking inspiration from these state-of-the-art residential water end use studies,
we identified a preliminary set of data relevant for water users modeling and profiling and,

SmartH2O – Databases of user information Page 9 D3.1 Version 3.1

then, we selected the most appropriate structure to be used in the SmartH2O project.
Specifically, the Platform Model (which represents the data model on which the components
of the SmartH2O platform are founded) has been developed. The Platform Model describes
the logical structure of the data processed by the SmartH2O platform. It is defined in terms of
an Entity-Relationship model which includes and integrates the user data that will be made
available by water utilities with additional information about users provided by the game with
a purpose (GWAP) application developed in WP4.
In the reminder of this deliverable we will describe the various features of the SmartH2O
Platform model, which is structured in two main parts, the Consumer Data Model, focussing
on the characteristics and features of the water users, and the User Gaming Model, which
complements the previous data model to incorporate the gamification components of the
SmartH2O Platform model.
 	
 	
 	
 	

SmartH2O – Databases of user information Page 10 D3.1 Version 3.1

2. Review of the state of the art

2.1 Users’ water consumption and psychographics datasets

In the last two decades, several residential water end use studies have been conducted.
Among these studies, we mention:

• The Residential End Uses of Water Study1 (REUWS), funded by the American Water
Works Association Research Foundation (AWWARF) from 1996 to 1999.

• The Water End Use and Efficiency Project2 (WEEP), funded by the Building
Research Levy, New Zealand, from 2005 to 2007.

• The California Single-Family Water Use Efficiency Study3, funded by the California
Department of Water Resources, from 2005 to 2010.

• Albuquerque Single-family Water Use Efficiency and Retrofit Study4, funded by the
American Recovery and Reinvestment Act (ARRA) in 2009.

• The South East Queensland Residential End Use Study5 (SEQREUS), funded by the
Queensland State Government, Australia, from 2009 to 2011.

• The H2ome smart project6, funded by the Water Corporation, Western Australia,
from November 2010 to February 2012.

The common goals of these residential water end use studies were:

• disaggregating water flow data into different water end use categories to design
effective water saving campaigns;

• identifying the main determinants of residential water consumption;
• classifying households for water demand forecasting;
• profiling water users to determinate potential water saving actions within each

profiled group of users;
• providing feedback to the users on water consumption.

Extensive databases on users’ water consumption and consumers’ behavior were developed
throughout these studies. Data on household water consumption were gathered through high
resolution (i.e. up to 72 pulses per liter and 5 – 10 seconds as data logging frequency) smart
meters. Psychographic data about water users and information on consumers’ behaviour
were gathered through household auditing, questionnaires, and self-reported diaries (filled
out by the users registering the use of water-consuming appliances/fixtures during monitored
days). In the following paragraphs, we provide a brief discussion on the data collected during
the aforementioned residential water end use studies.

1P. W. Mayer and W. B. DeOreo, Residential end uses of Water, AWWA Research Foundation and American Water Works

Association, 1999. Available online at: http://www.aquacraft.com/node/56
2M. Heinrich, Water End Use and Efficiency Project, 2007. Available online at:

http://www.branz.co.nz/cms_show_download.php?id=9bf916e031023c9323d5abe093a02a0b0741cc9e
3California Single-Family Water Use Efficiency Study, Aquacraft Inc., 2011. Available online at:

http://www.aquacraft.com/node/63
4Albuquerque Single-family Water Use Efficiency and Retrofit Study, Aquacraft Inc., 2011. Available online at:

http://www.aquacraft.com/node/71
5C. Beal and R. Stewart, South East Queensland Residential End Use Study-Final Report, 2011. Available online at:

http://www.urbanwateralliance.org.au/publications/UWSRA-tr47.pdf
6M. Anda, J. Brennan and E. Paskett, Behaviour change programs for water efficiency: Findings from North West and
Metropolitan Residential Programs in Western Australia. In: IWA World Water Congress & Exhibition, September, Busan,
Korea, 2012.

SmartH2O – Databases of user information Page 11 D3.1 Version 3.1

REUWS project (1996-1999)

The main objectives of the REUWS project were to figure out where, when and how water is
used in single-family houses in North America, by disaggregating water flow data into
different end uses categories (e.g., toilet flush, shower, dish washer, etc.). Twelve locations in
North America were analyzed (i.e., Boulder, Colorado; Denver, Colorado; Eugene, Oregon;
Seattle, Washington; San Diego, California; Tampa, Florida; Phoenix, Arizona; Tempe and
Scottsdale, Arizona; the Regional Municipality of Waterloo, Ontario; Walnut Valley Water
District, California; Las Virgenes Municipal Water District, California; and Lompoc, California).
The gathered data include:
• Historic billing records from 12,000 single-family detached residential accounts (1,000 per

study site);
• Household level information, obtained through a detailed mail survey sent to each of the

12,000 monitored households. The survey included questions about the number and the
type of water-using fixtures present in the residence, landscape characteristics, irrigation
methods and habits, adopted water conservation actions, type of residence, household
demography, size and economic value of the house, household income, etc. The mail
survey was completed by approximately 6,000 households.

• Data on the end uses of water, collected for approximately four weeks from a total of
1,188 households (approximately 100 per study site). Water consumption for various end
uses was measured through compact data loggers and a PC-based flow trace analysis
software. A flow trace is a record of flow through a residential water meter, recorded at 10
seconds intervals, which provides sufficient resolution to identify the patterns of specific
fixtures within the household.

• Daily weather data (e.g., max temperature and total precipitation per day) obtained for
each individual household from local weather measurement stations.

Further details on the structure of the REUWS database can be found in Appendix C of the
report Residential end uses of Water, authored by Mayer and DeOreo, published by the
AWWA Research Foundation and American Water Works Association in 1999.

WEEP (2005-2007)

The WEEP project aimed at developing automated methodologies for monitoring the end
uses of water in residential buildings. Twelve houses on the Kapiti Coast (New Zealand) were
monitored for a period of approximately six months, i.e., from mid-July to mid-October 2006
and from mid-November 2006 to end of February 2007. Two separate periods have been
monitored to capture seasonal variations. The data gathered throughout this study include:

• Water consumption data collected at a 10-second interval from high resolution
(approximately 30ppL) smart meters.

• Measurements of the signature trace of each fixture/appliance. In order to collect this
information, each appliance was turned on for at least 1 minute, while all other
appliances were turned off. The maximum flow rates of each tap were also
measured, using a conventional bucket and stop watch technique.

• Psychographic data of each household and information on users’ behavior, obtained
through a questionnaire sent to the monitored users. Such a questionnaire is
reported in Appendix A of the report: Water End Use and Efficiency Project-Final
Report (2007), by M. Helnrich.

California Single-Family Water Use Efficiency Study (2005-2010)

The main goals of the California Single-Family Water Use Efficiency Study were:
• to assess the efficiency of water use (and then to estimate remaining conservation

potential) in single-family homes in the State of California;

SmartH2O – Databases of user information Page 12 D3.1 Version 3.1

• to provide information on the rate of adoption of high-efficiency fixtures and
appliances by California homeowners;

• to provide information that can be used by California water agencies to update their
Urban Water Management Plans;

A sample of over 732 single-family households across ten water agencies throughout the
State of California was monitored between November 2006 and August 2008. Data collected
from this study include:
• Two-week water consumption from each monitored household. Flow trace data were

collected at a 10-second interval from smart water meters installed in each house. Flow
trace data were disaggregated into end uses using the proprietary Trace Wizard® software
(developed by Aquacraft, Inc.).

• Information about water conservation programs employed by the 10 water agencies
participating to the study obtained through surveys sent to the water agencies.

• Physical, demographic and attitude information on the costumers participating to the
study, obtained through surveys sent to the costumers.

• The irrigated area for each of the study household (analysed according to the plant type
and the irrigated area), obtained by ortho-rectified aerial photos provided by the water
agencies and through geographic information system (GIS) technology.

Albuquerque Single-family Water Use Efficiency and Retrofit Study (2009)

The goal of the Albuquerque Single-family Water Use Efficiency and Retrofit Study was to
obtain a detailed analysis on the indoor and outdoor water use patterns of a random sample
of single-family homes in the service area of the Water Authority Albuquerque Bernalillo
County Water Utility Authority (operating in the State of New Mexico) and, at the same time,
to determine the percentage of homes that meet specific criteria for high efficiency fixtures
and appliances.

A total of 3000 homes were sampled from the Water Authority’s billing database for survey
mailing, and annual/seasonal water use analysis. In order to examine the impact of the
Authority rebate program on water use, one half of the survey group (1500 customers) was
randomly selected among those customers who did not receive any rebates from the Water
Authority, and the other half was selected from customers who received either an indoor or
an outdoor rebate, or both. From returned surveys, a random sample of 240 household was
selected for data logging in order to obtain detailed end-use information. A second
component of the study was a retrofit analysis on a group of 29 homes chosen from the
baseline group. This retrofit group had its fixtures and appliances upgraded to high efficiency
devices and their water use was measured afterwards to determine the potential savings
from the program. The survey can be found in Appendix A of the report Albuquerque Single-
family Water Use Efficiency and Retrofit Study (2011) prepared by Aquacraft. The data
gathered throughout this study include:
• 10-second flow trace data collected from the main water meters serving study homes. The

flow of water was recorded for a two-week period. Other two weeks of flow trace data
were collected once the retrofits were complete.

• Disaggregation of the water flow trace into individual water use events (the disaggregation
has been performed through the software package Trace Wizard®)

• Local climate data (measured from local weather stations).
• Efficiency of the irrigation system and average water needs of the plants in a landscape

(estimated data).
• Theoretical Irrigation Requirement (TIR), which measures the amount of water needed to

maintain a reasonable landscape in an urban environment. The TIR of a landscape has
been estimated based on the characteristics of plant type, microclimate, density, and
efficiency of the irrigation system of each sub-area composing the landscape.

• Landscape Area of the residential sites was estimated using the high-resolution aerial
images made available from the City of Albuquerque. The detail provided by these images

SmartH2O – Databases of user information Page 13 D3.1 Version 3.1

generally made it possible to differentiate between turf areas, shrub borders, deciduous
and coniferous trees, low-water use planting, and non-irrigated areas. Ground observation
was used to confirm (or update) the findings from the aerial images.

SEQREUS project (2009-2011)

The objectives of SEQREUS project were calculating household and per-capita end-uses
consumption rates, revealing key determinants of water end-use demand, studying diurnal
demand patterns at an end-use level and assessing the influence of water-efficient
appliances.
Data collected from this study include:
• Water consumption data collected from 252 detached households in four interconnected

cities (i.e., Brisbane, Gold Coast, Ipswich and Sunshine Coast) located in the South East
Queensland region, in Australia. Data are collected from 3 periods: from 14th of June 2010
to 28th of June 2010; between the 1st of December 2010 to the 21st of February 2011; from
the 1st of June 2011 to the 15th of June 2011. Water flows were measured by smart meters
with a resolution of 72 pulses/litre. The smart meters were connected to data loggers,
which were programmed to record pulse counts every five seconds. Data were wirelessly
transferred to a central computer and stored in a database.

• demographics and socio-economic variables for each of the 252 metered households.
They include: number of occupants, age of occupants, annual income, and education
level.

• Water flow trace patterns of each appliance/fixture in each metered household. This
patterns are identified through stock surveys and self-reported water diaries filled out by
the householders over a seven-day period. The proprietary Trace Wizard® software was
used in conjunction with stock surveys and water diaries to analyse and disaggregate
consumption into the following end use event categories: toilets, taps, leaks, irrigation,
shower, washing machine, bathtub and dishwasher.

H2OME SMART project (2010-2012)

The H2HOME SMART project aimed at empowering residents to make practical and
sustainable behavioral changes in their water use by providing personalized feedbacks (via
telephone conversations or letters). The projected involved 9 towns of the Pilbara and
Kimberley Regions of Western Australia, engaging 4,338 households.
A final evaluation of the program estimated savings equal to 6.9% of the expected
consumption in 2011. Also, the program included a residential retrofit campaign to pursue
additional savings.
Data collected during this study include:
• Low resolution, water consumption billed data were collected from 6 meter reads rounds:

Jan-Feb 2011, march 2011, July-Aug 2011, Aug-Sept 2011, Oct-Nov 2011 and Jan-Feb
2012. The first five rounds of meter reads included both participants and non-participants,
while only participants were considered for reading 6. A total of 16,383 meter read were
obtained after the first round, then this number decreased between rounds 2 and 5, but it
was always above the targeted value of 12,500 reads. Reading 6 was obtained only for
3,681 households (only participating households had meter reads).

• For each household, demographics and socio-economic data characterizing the
occupants were also collected, including, among others, household type, account type,
household responsibility, number of occupants, number of toilets, garden area, irrigation
techniques, pool presence.

Data regarding the retrofit campaign of the project (May 2011 – February 2012) report about
a total of more than 11,000 retrofit items and installations occurred at 2,286 eligible
household before the end of February 2012.

SmartH2O – Databases of user information Page 14 D3.1 Version 3.1

2.2 Meteorological databases

Exogenous factors, such as external temperature, precipitation and/or drought conditions
potentially influence residential water use. Numerous studies, aiming at analyzing the effect
of climate variables on water consumption, have been conducted especially in North
America. For instance, in the REUWS1 project, it was found that, across 12 cities in North
America, net evapotranspiration explained 59% of the variation in outdoor water use.
Guhathakurta et al.7 analyzed the spatial effects of June nighttime temperature on residential
water use in Phoenix. They developed a statistical model indicating that an increase of 1°C
results in an increase in household water consumption of 4.61 m3 annually. The above
considerations point out the need for considering local meteorological data (in particular, daily
temperature, humidity and precipitation) for accurately modeling and profiling water users.
On the other hand, it has to considered that the effect of varying climatic conditions on
residential water consumption might be very different according to the efficiency of water-
using equipment; also automatic temperature and humidity sensing devices can greatly
change the amount of water required for landscaping, even if they are not yet widespread for
household use.
In order to properly account for meteorological conditions both historical and near real-time
data are needed. Indeed, historical data are necessary for modeling and understanding the
consumer behavior and for comparing different types of users. Near real-time data are
necessary to validate and update the consumer model, and to make a short-term prediction
of the water consumption.

Climate data can be collected from ground operation systems and upper-air systems (e.g.,
weather balloons, weather radars, aircraft observations, satellite observations). Several
climate datasets are available in the literature, such as:
• The Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface

Stations Data8. This dataset contains land surface measurements as reported by stations
in the U.K. and globally. Available measurements include daily and hourly weather
observations, hourly wind parameters, max and min air temperatures, daily, hourly rain
measurements, soil temperature parameters, sunshine duration and radiation
measurements from 1853 to date. The MIDAS data are restricted and they can be used
for free for academic research. In order to obtain the MIDAS dataset, an application has to
be submitted to the British Atmospheric Data Center.

• The Data Warehouse (DWH) of MeteoSwiss9. Measurements of temperature, humidity,
precipitation collected every 10 minutes from almost 120 surface stations located over
Switzerland. The data can be requested to MeteoSwiss, subject to a fee.

• The Global Summary Of the Day (GSOD), which contains climate data from more than
9,000 stations located around the world. The data are obtained from the U.S. Air Force
Climatology Center, they are updated approximately daily, they can be download for free
from the GSOD’s website10 and can be used for non-commercial purposes. The daily
variables included in the GSOD’s dataset are, among others: minimum, maximum and
average temperature, precipitation amount and snow depth.

7 S. Guhathakurta, S. Gaber, P. Gober, Impact of urban heat islands on residential water use: The case study of metropolitan
Phoenix. North American Regional Science Council Annual Meeting, Las Vegas, Nevada, USA, 2005.
8 http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dataent_ukmo-midas
9http://www.meteoswiss.admin.ch/home/research-and-cooperation/international-cooperation/gcos/national-climate-

observation.html
10 http://www7.ncdc.noaa.gov/CDO/cdoselect.cmd?datasetabbv=GSOD&countryabbv=&georegionabbv=

SmartH2O – Databases of user information Page 15 D3.1 Version 3.1

Since the GSOD’s dataset contains updated daily measurements from stations located in
Ticino (Switzerland) and in London (United Kingdom), i.e. the two case studies of the
SmartH2O project, we decided to use this dataset throughout the SmartH2O project for the
purpose of user modeling and profiling.

SmartH2O – Databases of user information Page 16 D3.1 Version 3.1

3. Database structure
This section shows the structure of the database of SmartH2O, called SmartH2O db
hereafter, which is currently under development. As real data become available, the database
structure can be expanded to obtain a finer and richer structure.

3.1 Platform data model description

In this section, we define the data model of the SmartH2O platform.
The data model describes the logical structure of the data processed by the various
components of the SmartH2O platform in terms of entities and relationships following the
Entity-Relationship model. It includes and integrates the user data made available by the
water utilities and additional information about users provided by the game with a purpose
(GWAP) developed in WP4.
The Platform data model comprises two components:

• the Consumer Data Model: described in Section 3.3, contains the set of entities and
relationships that express knowledge about user data made available by the water
utilities (smart metered or surveyed).

• the User Gaming Model: described in Section 3.4, focuses on a specific class of
actions, which are deployed in the form of a gamified application or of a GWAP and
expresses the engagement and rewarding mechanisms typical of gaming.

Figure 1. The SmartH2O Platform Data Model

3.2 Data requirements

In the following tables (Tables 1-3) we list the data related to users, houses, billing prices
and policies with their dimensional unit and their justification in the SmartH2O scenario, that
have been considered during the development of the SmartH2O db. The data will be used
during the project to infer information about users’ profiles and to estimate econometric
models of water demand (main goal of WP5).
In Table 1 “high-priority” building data are listed. These data will be considered in the
Consumer Data Model of SmartH2O presented in Section 3.3.

SmartH2O Platform Data Model

Consumer Data
Model

User Gaming
Model

SmartH2O – Databases of user information Page 17 D3.1 Version 3.1

Table 1: High-priority building data

NAME DESCRIPTION UNIT JUSTIFICATION: the variable is necessary to deliver the
final Water Demand Management (WDM) strategy and more
particularly

…to profile users …to estimate

econometric models of
water demand

Number of
occupants

Number of house
occupants [-]

- To evaluate the average water
consumption per capita
- To classify households for water
demand forecasting
- For user modeling and profiling

-­‐ To disentangle the
impact of price and
other policies from
structural determinants
of water consumption

-­‐ To have per capita
water consumption

Household
location

Zip code/water
reading group ID
(Town, suburb)
Full postcode is
fine

[-]

- To develop an agent-based
model
- To cluster consumption data and
other psycho-demographic data
based on location (spatial
analysis)

-­‐ To model the impact of
social ties (i.e. a
possible driver of
water consumption)

-­‐ To disentangle the
impact of price and
other policies from the
role of socio-economic
determinants (e.g.
rural vs. urban) and
exogenous drivers
(e.g. climate)

Residency
type

Household category
(e.g. flat, single
house, etc…)

[-]

- To classify households for water
demand modeling and forecasting
- To cluster similar house types
and compare the features of their
inhabitants and their water
consumption
- For user modeling and profiling

-­‐ To disentangle the
impact of price and
other policies from
structural determinants
of water consumption

Water
consuming
devices
presence

Binary variable
indicating the
presence of water
consuming devices
(e.g. washing
machine, shower,
faucet, dishwasher,
etc…)

[binary]

- To disaggregate water flow data
into different water end use
categories
- For user modeling and profiling
- End use focused Water Demand
Management (WDM) strategies
delivery

-­‐ To disentangle the
impact of price and
other policies from
structural determinants
of water consumption

Garden
area

Area of the garden,
if present, zero
otherwise

[m2]

-­‐ Critical attribute for
disaggregation and profiling
-­‐ WDM strategy delivery
- To classify households for water
demand forecasting
- Its potentially one of the most
contributing factors to residential
water consumption

-­‐ To disentangle the
impact of price and
other policies from
structural determinants
of water consumption

Income rate Gross pre-tax yearly
income of the whole

[£/year
(or

-­‐ To understand and model its link
with water consumption

-­‐ To disentangle the
impact of price from

SmartH2O – Databases of user information Page 18 D3.1 Version 3.1

household month)] -­‐ To develop accurate agent-
based models, in which we will
verify how much the income rate
influences the acceptance of
awareness campaigns.

wealth effects

Billing price

Monthly service
charge (£) and
volume charge (£/L)
Panel data, i.e.,
sample of same
households
observed overtime

[£], [£/L]

- To disentangle the price effect
from the effects of other drivers

- To find out if and how price level
and tariff structure have driven
consumption behaviour

-­‐ To find out if and how
price level and tariff
structure have driven
consumption
behaviour

User type

Only if users other
than households
included
(Household;
Commercial or small
business; Industrial)

[-]

-­‐ To cluster consumption and end
uses according to the type of
user
-­‐ To develop accurate agent-
based models. Indeed, water
consumption awareness
depends whether the consumer
will pay the bill or not, as well as
whether he/she able to
periodically see his/her water
consumptions (i.e., if he/she an
employer of a company, etc.)

-­‐ To disentangle the
impact of price and
other policies from
structural determinants
of water consumption
(i.e. consumption
practices and rates are
different between
residential and
business users)

In Table 2 exogenous data considered in the SmartH2O db are listed.

Table 2: Exogenous Data
NAME DESCRIPTION UNIT JUSTIFICATION: the variable is necessary to

deliver the final WDM strategy and more
particularly

…to profile users …to estimate econometric

models of water demand

Rainfall

Time series of rainfall
data.
Needed at least one
year, in order to
consider the seasonality

[mm/day]

- For user modeling
and profiling, as this
variable influences
water consumption.

-­‐ To disentangle the
impact of price and
other policies from
other exogenous
drivers

Temperature

Time series of
temperature data.
Needed at least one
year, in order to
consider the seasonality

[°C]

- For user modeling
and profiling, as this
variable influences
water consumption.

-­‐ To disentangle the
impact of price and
other policies from
other exogenous
drivers

In Table 3 other information about users and buildings are listed. These data will be
considered in future extensions of the Consumer Data Model of SmartH2O presented in
Section 3.3.

SmartH2O – Databases of user information Page 19 D3.1 Version 3.1

Table 3. Other low-priority data about users and households

NAME DESCRIPTION UNIT JUSTIFICATION: the variable is necessary to deliver
the final WDM strategy and more particularly

…to profile users …to estimate

econometric models of
water demand

Occupants age Age of house
occupants [-]

- For user modeling and
profiling, and to understand if
this variable influences water
consumption.
- WDM strategy delivery

-­‐ To disentangle the
impact of price and
other policies from the
role of socio-economic
determinants

Years of
occupancy

Number of years
the house is
being occupied
by the same
users

[-]

- For user modeling and
profiling, and to understand if
this variable influences water
consumption.
- WDM strategy delivery

-­‐ To disentangle the
impact of price and
other policies from
structural determinants
of water consumption

House age
Number of years
since the house
was built

[-]

- For user modeling and
profiling. Indeed, old house
might not have water-
efficient devices such as
flush toilets and
showerheads. Thus, WDM
strategies should be targeted
to replace the non-efficient
devices. Furthermore, old
house can have leaking
water pipes.

-­‐ To disentangle the
impact of price and
other policies from
structural determinants
of water consumption

House size
Area of the
house (cadastral
area)

[m2]

- For user modeling and
profiling
- To classify households for
water demand forecasting
- To see whether it is related
to other important factors
(e.g. number of occupants
and number of toilets)

-­‐ To disentangle the
impact of price and
other policies from
structural determinants
of water consumption

Household
responsibility

Type of house
ownership (e.g.
owned, rent,
house provided
by employer,
etc…)

[-]

-­‐ To develop accurate
agent-based models.
Indeed, water
consumption awareness
depends if the consumer
will pay the bill or not (i.e.,
if he/she is a tenant and
his/her lease does not
depend on water
consumption)

-­‐ WDM strategy delivery

-­‐ To disentangle the
impact of price and
other policies from the
role of other
determinants

Rural

Census
classification or
share of
municipal rural
area – if
household
location is not

[Yes/No] or
[%]

- To classify households for
water demand forecasting

-­‐ To disentangle the
impact of price and
other policies from the
role of other
determinants

SmartH2O – Databases of user information Page 20 D3.1 Version 3.1

sufficient

Density

Population
density – if
household
location is not
sufficient

[1,000
inhabitants /
km2]

-­‐ To see whether it is
related to other
important factors (e.g.
type of house)

-­‐ To disentangle the
impact of price and
other policies from the
role of other
determinants

Second
Used only for
holidays or
weekends

[binary]

- To classify households for
water demand forecasting

-­‐ To disentangle the
impact of price and
other policies from
structural determinants
of water consumption

Watering
method

Watering
method
technique

[-]

-­‐ To understand how
technologies and
watering methods
influence water
consumption

-­‐ WDM strategy delivery

-­‐ To disentangle the
impact of price and
other policies from
structural determinants
of water consumption

Watering time
Watering time

[min/day] or
[min/week]

-­‐ WDM strategy delivery
(mostly educational)

-­‐ To disentangle the
impact of price and
other policies from
structural determinants
of water consumption

Pool presence Binary variable

- To classify households for
water demand forecasting
- WDM strategy delivery
- To disaggregate water flow
data into different water end
use categories
- Its potentially one of the
most contributing factors to
residential water
consumption

-­‐ To disentangle the
impact of price and
other policies from
structural determinants
of water consumption

Pool cover
presence Binary variable [-]

- WDM strategy delivery.
Indeed, the presence of a
pool cover it’s important to
keep the pool clean and
prevent water loss through
evaporation

-­‐ To disentangle the
impact of price and
other policies from
structural determinants
of water consumption

Water
consuming
devices
type/efficiency
level

Any
qualitative/quant
itative data
about water
consuming
devices class,
features and
efficiency

It depends
on the
available
data

- WDM strategy delivery
- To disaggregate water flow
data into different water end
use categories

-­‐ To disentangle the
impact of price and
other policies from
structural determinants
of water consumption

-­‐ To understand if the
existence or adoption
of any water
consuming devices
influence water
consumption

Number of
toilets

Number of
toilets in the

[-]
- To disaggregate water flow
data into different water end

-­‐ To disentangle the
impact of price and
other policies from

SmartH2O – Databases of user information Page 21 D3.1 Version 3.1

house use categories

structural determinants
of water consumption

Household
shower
consumption
per day

Amount of water
used for
showering

[L/hh/day]

- WDM strategy delivery
- To classify households for
water demand forecasting
- To disaggregate water flow
data into different water end
use categories

-­‐ To disaggregate water
consumption in the
home into several
indoor fixtures e.g.
shower consumption,
so that we can explore
the role of dynamic
pricing policies such
as seasonal or peak
load pricing.

Showering time Estimated
showering time [min/day]

- WDM strategy delivery
- To classify households for
water demand forecasting

-­‐ To disentangle the
impact of price and
other policies from
structural determinants
of water consumption

Household
clothes washer
consumption
per day

Estimated water
consumption
devices rate

[L/hh/day]

- WDM strategy delivery
- To disaggregate water flow
data into different water end
use categories

-­‐ To disaggregate water
consumption in the
home into several
indoor fixtures e.g.
clothes washer
consumption so that
we can explore the
role of dynamic pricing
policies such as
seasonal or peak load
pricing.

Household tap
consumption
per day

Estimated water
consumption
rate

[L/hh/day]

- WDM strategy delivery
- To disaggregate water flow
data into different water end
use categories

-­‐ To disaggregate water
consumption in the
home into several
indoor fixtures e.g. tap
consumption so that
we can explore the
role of dynamic pricing
policies such as
seasonal or peak load
pricing.

Household toilet
consumption
per day

Estimated water
consumption
rate

Estimated
water
consuming
devices rate

- WDM strategy delivery
- To disaggregate water flow
data into different water end
use categories

-­‐ To disaggregate water
consumption in the
home into several
indoor fixtures e.g.
toilet consumption so
that we can explore
the role of dynamic
pricing policies such
as seasonal or peak
load pricing.

Well

Well or other
source in the
house –
replacing device
(partially
replacing water
service)

[yes/no]

-­‐ To understand which
alternatives sources of
water each household
has

-­‐ To understand which
alternatives sources of
water each household
has

Users’
education level

User’s education
level, e.g. high
school degree

[-]

-­‐ To understand and model
its link with water
consumption

- Propose WDM strategies
based on the users’

-­‐ To disentangle the
impact of price and
other policies from the
role of socio-economic
determinants

SmartH2O – Databases of user information Page 22 D3.1 Version 3.1

education level

Users’
perceived
environmental
commitment

Personal
environmental
commitment
perceived by the
user.
Qualitative
class, e.g.
«high, medium,
low»

[-]

- WDM strategy delivery
- Compare the expected
consumption with the actual
user attitude

-­‐ To disentangle the
impact of price and
other policies from the
role of socio-economic
determinants

-­‐ To understand if and
how individuals’
environmental
attitudes and
behaviors influence
water consumption

3.3 Consumer Data Model

The Consumer Data Model comprises the set of entities and relationships that express
knowledge about user data made available by the water utilities (smart metered or billed).
This knowledge, which is used for analysis purpose, can be automatically produced by smart
meters, obtained from on-line bills, or manually produced by users that interact with the
GWAP developed in WP4.
In essence, the Consumer Data Model of SmartH2O is organized into a database designed
following the Entity-Relationship model.

3.3.1 Description of the main entities of the Consumer data model
Household: it identifies the concept of household (a.k.a. “family”). Each household has an
identification [Oid], an [UtilityID] linking the house to the water utility, the size [Household
Size], a flag stating if the Head of household is either a tenant or an owner [Ownership], the
number of occupants [Number Occupants], the presence of pets, if any, [Number Pets], the
area of the garden (if any) [Household Garden Area], the volume of the pool (if any)
[Household Pool Volume], a flag stating if the house is used only for holidays or weekends
[Second], a flag stating if the household discloses the geo-location to other users [Visible], a
flag stating if the household discloses household information to other users [Public].
Each Household could have up to n Devices (Device Class). Each Device Class device has
an identification [Oid], the name of the device [Name] and the number of pieces of that device
present in the considered house [Number].
Device Consumption: it identifies the consumption data, disaggregated by Device, result of
models computation. Each Device Consumption has an identification [Oid], a given interval
[Start Date][End Date] ant the consumption value [Device Consumption].

Bill: each bill is identified by the account number [Account Number], the date [Bill Date] and
the company [Company] which invoiced the bill. Moreover, for each bill we store the charge
for water supply [Volume Charge], the charge for service supply [Service Charge] and the
currency of that bill [Currency]. Each bill is in association with the Household the bill is
referring to and has some Billing Price composition.

Billing Price: for each month [Month], year [Year] and company [Company], it stores the
monthly service charge [Monthly Service Charge] and volume charge [Monthly Volume
Charge].

Household Consumption: identifies the consumption data, disaggregated by Household. If
no disaggregation is computed, it will store the original consumption data coming from smart

SmartH2O – Databases of user information Page 23 D3.1 Version 3.1

meter readings. Each Household Consumption has an identification [Oid], the given interval
[Start Date][End Date], and the computed consumption value [Consumption].
Each Household could have n NeutralUsers (a.k.a. “family members”). Each Neutral User
inherits an identification attribute [Oid] from the User entity, the authentication information
[Username] and [Password], the email [Email], the firstname [Firstname] and lastname
[Lastname] and the birthdate [Birthdate]. Moreover, for each Neutral User we store the
registration date [Registration Date], the name of his/her role in the family [Family Role],
his/her educational level [Educational Level], the economic level [Income Rate], the money
system adopted by the user [Currency], a flag stating if the user discloses personal
information to other users [Public], the user language [Language], the temperature unit
[Temperature Unit] and the length unit adopted by the user.
The data model implements the Role Based Access Control (RBAC): Users are clustered in
Groups, which represent the various classes of users. Each Group has an identification
attribute [Oid] and a name [GroupName]. Groups are connected to Modules, which represent
the interfaces to the SmartH2O resources that the class of users is entitled to access.
Each Module has an identification [Oid], a name [ModuleName] and the name of the module
domain [ModuleDomainName].
In order to provide more appropriate and targeted incentives, Neutral Users are grouped into
consumer segments. Each Consumer Segment is identified by a unique id [Oid], a name
[Name] and a description [Description]. A segment of users is characterized by a set of
features. Each Feature is identified by a unique id [Oid], a type [Type] and a level [Level]
(e.g. Consumption Average: medium, Environmental Commitment: high).

Media Asset: each media object provided to users is identified by a unique id [Oid], a title
[Tile], a description [Description], the author [Author], the duration of the video [Duration] and
the URL of the media object [Media].
Some Tips are provided to users. Each Tip is identified by a unique id [Oid], a name [Name]
and the text content divided into a header [Header] and a body [Body].
Users can be notified about possible leaks or bad water quality through alerts. Each Alert is
identified by a unique id [Oid], a type [Type] (e.g. Water Quality Alert, Leakage Alert,
Shortage alert), a level [Level] (e.g. low, medium, high). When a new alert is inserted, the
current date [Date] is stored in order to keep track of the progress of a particular type of alert
and to record past critical situations.
An Alert can be associated to a Mail, in order to directly notify the user. Each Mail is identified
by a unique id [Oid], a description [Description], the subject of the email [Subject], the body of
the email [Body]and the language [Language].

Building: it identifies the physical building, containing one or more Households. Each
building has an identification [Oid], an address [Address], the area of the garden (if any)
[Building Garden Area], a description of the type of residence [Residence Type], the size
[Building Size], the number of years since the house was built [Age], the volume of the pool (if
any) [Building Pool Volume].
Each building could be metered by oneSmart Meter.
Meter Reading stores the readings and each of them has an identification [Oid], the
timestamp [Reading Date Time], the company [Company] and the actual reading [Total
Consumption].
Each building is also associated to the District where it is located. Each District has an
identification attribute [Oid], a Zip code [Zip Code], the name of the country [Country] and the
city it belongs to [City] and the name of the district [Name].
Weather Condition: the entity stores, for a given interval [Start Date][End Date], the quantity
of rain [Rain Fall] and the Average Temperature [Average Temperature] in a certain District.

SmartH2O – Databases of user information Page 24 D3.1 Version 3.1

Unit Of Measurement: stores the information needed to perform conversions. Each
conversion is applied to a given physical quantity [Physical Quantity] and is characterized by
a unique id [Oid], the primary [Primary Unit] and secondary [Secondary Unit] unit of measure
and the coefficient to be applied in order to perform the conversion.

Figure 2. The Consumer Data Model of SmartH2O

3.4 User Gaming Model

The User Gaming Model comprises the set of entities and relationships that express
knowledge about user data made available by the GWAP developed in WP4.
Ii is logically divided into two sub-schemas:

• The Gamification engine subschema data model describes the entities and
relationships necessary to represent the users of business applications that are
extended with gamification features.

• The Game platform subschema data model, which adds more specific entities and

SmartH2O – Databases of user information Page 25 D3.1 Version 3.1

relationships describing the data requirements for players of the digital games.

Gamification Engine Data Model

The Gamification Engine Data Model comprises the set of entities and relationships that
express knowledge about user data produced and consumed by the Advanced Gamified
Customer Portal.
The schema in Figure 3. The Gamification Model shows the implemented gamification engine
database. The following entities have been considered:
Community Users: the entity is a specialization of User and contains all the attributes that
identify the user as a member of a community (like credits, bio information, …).
Gamified Application: this table contains information about applications that call the
gamification engine.
Action Type: the entity contains the dictionary of the actions of the gamification engine. The
attribute values of an action are the specific features of the considered action.
Action Instance: the entity stores all the action instances performed by a user.
Badge Type: the entity contains the dictionary of the badges that a user can acquire.
Badge Instance: the entity contains all the badge instances acquired by the user.
Reward Type: the entity contains the dictionary of the rewards.
Reward Instance: the entity contains the instances of the rewards acquired by the users.
Text Mail: the entity contains information about the notification to send to users after a
particular event in the gamification engine (e.g. a user gains a badge).
Notification: this entity contains the notification sent to users.
Thematic Area: this entity contains the thematic areas to organize actions and badges
according to topics. Each thematic area is identified by a unique id and a name.
Game Result: this entity contains the possible outcomes of games that need to be converted
into credits. Each game result is identified by a unique identifier, a title (e.g. New level
reached) and optionally by a score, a level and the current available lives. Each game result
is mapped to an Action Type and, according to the game results attributes (score, level, lives)
the game result is converted into credits.
Game Points Converter: each conversion is identified by a unique id, the game to which the
conversion rule is applied, and the customizable formula which will take the attributes as
inputs (score, level, lives) and will produce credits amount as output.
Alliance: this entity contains the coalitions created among competitor users. Each Alliance is
identified by a unique id, a start date and an end date.
Goal: this entity contains the consumption goals assigned to users. Each goal is identified by
a unique id, a title, a consumption value, and optionally the completion date. A goal can be
assigned to a given user or to an alliance of users. Goal can be associated to a Badge Type,
obtained by the user when the consumption goal is achieved.

SmartH2O – Databases of user information Page 26 D3.1 Version 3.1

Figure 3. The Gamification Model

SmartH2O – Databases of user information Page 27 D3.1 Version 3.1

3.4.2 Game Platform Data Model
The Game Platform data models expands the gamification engine data model with the
representation of additional entities and relationships that capture the essential data about
the users who play with the SmartH2O digital games.
The Entity Relationship Schema is represented in Figure 4. Game platform data model.
Game is the core entity: the Mode attribute represents the gameplay modes (e.g. Single
Player, Multi Player, Cooperative), while the Genre attribute identifies its genre (e.g. Puzzle,
Educational). Each game is also characterized by a Title, a Theme and the
Minimum/Maximum number of players.
An Achievement has an Icon, which describes it in a visual way, a Category that specifies
the task (Instructor, Grinder), an attribute PointsGiven, which contains the amount of points to
be granted, and a Boolean attribute OfTheDay defining whether the achievement has to be
completed on a specific day in order to obtain virtual goods, more points, or increased levels.
The Player entity accommodates game-specific personal and social features. Avatar and
Nickname allow the user to be recognizable by using a custom image or a unique fictional
name, while Player Type, Player Level and Experience Points convey player progress.
Reputation in online gaming communities is fundamental and distinctive feature of any player;
being able to recognize wheter a player is bad mannered, prone to cheating, unpleasant to
play with is of utterly importance to assure a satisfying gaming experience for the user of an
entertainment platform; it is usually measured as an integer number ranging from 0 to 5.
The model describes also the game-relevant statistics (GameStats): the proficiency and the
experience of a player in a given game are represented by aggregating in a compact way
such indicators as points gathered and hours spent playing.
GameBadges represent the achievements that have been unlocked by a player.
The CompletionPercentage field shows how much the player has already achieved in a
specific task. StartDate and EndDate record the dates in which the player has started to work
on the achievement's goals and the date in which he has obtained it. The TrialsN attribute
tracks how many times the user tried to fulfill the achievement.
A GamePlayAction of a player, associated with a specific Gameplay, records the StartDate
and EndDate of the gaming session and the actual actions performed by the player on that
specific time frame and the Role defines which are the allowed actions in the game for the
role associated to a player.
In order to store questions and answers required by the Drop!TheQuestion trivia game,
Question and Answer entities have been provided. QuestionInstance keeps track of
players game play information related to the specific quiz game.

SmartH2O – Databases of user information Page 28 D3.1 Version 3.1

Figure 4. Game platform data model

SmartH2O – Databases of user information Page 29 D3.1 Version 3.1

4. Database prototype
The SmartH2O database is implemented in MySQL 5.6.14. A replica of the database is
dedicated to each water utility involved in the project.
This section provides an overview of different services deployed within the platform.

4.1 Examples of endpoint and access procedure description

Customers interested in the SmartH2O db will access it by using two Web portals, one
developed for TWUL customers and the other for SES customers, which provide secure and
controlled access to remote users, allowing multiple devices (laptops, tablets, and
smartphones) access to SmartH2O information.
They will consist in a read-only REST endpoint to the SmartH2O gamification portal and
dataset. The endpoint will provide read-only access to the SmartH2O datasets, allowing the
customers to know their total consumptions, the consumptions for different devices, etc..
The gamification engine supports the integration with the SmartH2O db by means of RESTful
web services with the response available in JSON format.
Each service consists of a single REST endpoint, which contains a single method for
accessing a specific gamified application.
In order to get available actions for a specific gamified application the Get Action web
service is available. The service requires the name of the gamified application as a
mandatory parameter.
The endpoint is:
{webappUrl}/UserActivityCreditWebServiceREST/GetActions/getActions.do	

A sample of JSON response is:
{"actions":	
 [

	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 "gamifiedApplication":	
 "Energy	
 Portal",	

	
 	
 	
 	
 	
 	
 "actionName":	
 "Do	
 energy	
 saver	
 quiz",	

	
 	
 	
 	
 	
 	
 "actionID":	
 4	

	
 	
 	
 },	

	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 "gamifiedApplication":	
 "Energy	
 Portal",	

	
 	
 	
 	
 	
 	
 "actionName":	
 "Login",	

	
 	
 	
 	
 	
 	
 "actionID":	
 1	

	
 	
 	
 }	

]}	

In order to get the user credits obtained by interacting with the game, it is required to
specify the user email as parameter of the REST web service.
The endpoint is as follows:
{webappUrl}/UserActivityCreditWebServiceREST/GetUserCredits/getUserCredits.do?userEmail=	

xxx@yyy.com	

and the JSON response can be as follows:
{"userCredits":	
 {	

	
 	
 	
 "userEmail":	
 "xxx	
 @yyy.com",	

	
 	
 	
 "totalCredit":	
 3400,	

	
 	
 	
 "creditsSpent":	
 0,	

	
 	
 	
 "creditsAvailable":	
 3400	

SmartH2O – Databases of user information Page 30 D3.1 Version 3.1

}}	

To get the rewards that can be redeemed by the user, it is also required to specify the user
email as a parameter of the web service.
The endpoint is as follows:
{webappUrl}/UserActivityCreditWebServiceREST/GetUserRewards/getUserRewards.do?userEmail=	

xxx@yyy.com	
 	

and the JSON response:
{"rewards":	
 [

	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 "rewardName":	
 "Coupon	
 Discount	
 20%",	

	
 	
 	
 	
 	
 	
 "rewardID":	
 1,	

	
 	
 	
 	
 	
 	
 "neededPoints":	
 1000,	

	
 	
 	
 	
 	
 	
 "userEmail":	
 "	
 xxx@yyy.com	
 "	

	
 	
 	
 }	

]}	

In order to register the user action in the gamification platform, the Assign Actions To User
web service is available. The request is a JSON array with the following parameters:

• email: the email of the user to assign the action [MANDATORY]
• time: the timestamp of the request in Unix Timestamp format [MANDATORY]
• area: the name of the gamified application [MANDATORY]
• name: the name of the action [MANDATORY]
• description: the description of the action [MANDATORY]
• tag: additional parameter for managing non-repeatable action [NOT MANDATORY]
• link: additional parameter for managing non-repeatable action [NOT MANDATORY]
• executor: additional parameter for managing non-repeatable action [NOT

MANDATORY]
• objectkey: additional parameter for managing non-repeatable action [NOT

MANDATORY]

A sample JSON array for the request is the following:
[{"email":"xxx@yyy.com","time":1407307785347,"area":"Energy	

Portal","name":"Login","description":"Login","tag":"	
 ","link":"	
 ","executor":"	
 "}]	

URL:
{webappUrl}/UserActivityCreditWebServiceREST/AssignActionsToUsers/assignActionsToUsers.do	

In order to register the user reward in the gamification platform the Reedem User Reward
we service is available. The request is a JSON array with the following parameters:

• idReward: the id of the reward to reedem [MANDATORY]
• userEmail: the email of the user that reedems the reward [MANDATORY]

An example of JSON array for the request:
{"idReward":1,"userEmail":"	
 xxx@yyy.com	
 "}	

The endpoint is as follows:
	
 {webappUrl}/	
 UserActivityCreditWebServiceREST/RedeemUserReward/redeemUserReward.do	

To push user registration data about a new user in the gamification the User Registration

SmartH2O – Databases of user information Page 31 D3.1 Version 3.1

web service will be used.
The request is a JSON array with the following parameters:

• birthdate: the birthdate of the user in UNIX timestamp format
• username
• password
• email
• firstname
• lastname
• city
• country
• publicprofile: boolean value to indicate if the user is active or not in the community
• internal: boolean value to indicate if the user in an internal user of the community
• isocode: language isocode (used to manage international community)
• geoarea
• photoname: the name of the photo of the user
• photocode: the photo of the user in Base64 format

An example of the JSON request is:
[{"birthdate":1407276000000,"username":"markross","password":"markross","email":"mark.ross@e
e.com","firstname":"Mark","lastname":"Ross","city":"London	
 ","country":"United	

Kingdom","publicprofile":true,"internal":false,"isocode":"en","geoarea":"Europe"}]	

The endpoint is as follows:
	
 {webappUrl}/UserRegistrationWebServiceREST/UserRegistration/userRegistration.do	

To push the update user data to the gamification platform the User update web service will
be used.
The JSON array for the request is composed by the following parameters:

• birthdate: the birthdate of the user in UNIX timestamp format
• username
• password
• email [MANDATORY]
• firstname
• lastname
• city
• country
• publicprofile: boolean value to indicate if the user is active or not in the community
• internal: boolean value to indicate if the user in an internal user of the community
• isocode: language isocode (used to manage international community)
• geoarea
• photoname: the name of the photo of the user
• photocode: the photo of the user in Base64 format

An example of JSON array for the request is :
[{"birthdate":1407276000000,"username":"markross","password":"markross","email":"mark.ross@e
e.com","firstname":"Mark","lastname":"Ross","city":"London	
 ","country":"United	

Kingdom","publicprofile":true,"internal":false,"isocode":"en","geoarea":"Europe"}]	

SmartH2O – Databases of user information Page 32 D3.1 Version 3.1

The endpoint is:
{webappUrl}/UserRegistrationWebServiceREST/UserUpdate/userUpdate.do	

4.2 Prototype population

The SmartH2O db has been partially populated with synthetic data provided by partners.
In particular, on one hand some tuples produced by a preliminary version of the gamification
engine have been inserted into the User Gaming Model part of the db.
On the other hand, the primary data collection step, used to record the volume of water used
in a set of houses located in London, was performed by using an Access database provided
by TWUL.
In particular, the MeterReading table was populated by using data related to cumulative
meter readings produced every 15 minutes. The House table contains tuples related to 1200
houses located in London of different types (e.g. detached, semi-detached, etc.).

4.3 Data acquisition model description

Data acquisition is an essential part of water-use data management, analysis, and use since
information that are efficiently produced and managed can be useful for future purpose with
little additional effort. In this section we describe a model and plan for the acquisition when
real data will become available.

There are three different groups of water-use data:

1. Data coming from the user gaming model: they will be integrated into the db by using
RESTful web services, as described in Section 4.1.

2. Data in the consumer data model not provided by sensors: in this set of data we
include information for identifying houses, users, billing prices, etc. They will be
provided in Access (as in the population preliminary phase) or standard format (e.g.
XML, CVS) and integrated in the SmartH2O db.

3. Data in the data model produced by sensors: this set contains both weather
information and data related to rate or volume of water-use. They can be produced
with a certain frequency (e.g. every 15 minutes those produced by smart meters) but
then transmitted in a single shot once a day once by using JSON files. Such files will
be processed in parallel by Apache Hadoop and Apache Pig scripts. Otherwise, the
SmartH2O model can provide API to push such information in the db.

SmartH2O – Databases of user information Page 33 D3.1 Version 3.1

5. Data Governance Policy
The SmartH2O project develops a platform with which humans will interact, possibly
exchanging information which is private and sensitive.
The SmartH2O project has declared the general principles guiding its management of ethical
issues in the project proposal. We report the project stance on ethical issues in the next two
sections.

5.1 Ethical issues related to privacy

Each party shall be responsible for ensuring its own compliance with all laws and regulations
applicable to its activities, including without limitation the acquisition of data, the processing of
data by it through any tool used in connection with the Project and the use of such date within
the project framework. Such laws include, but are not limited to, those in respect of rights of
privacy, publicity, reputation and intellectual property rights, including patent and copyright
rights.
Each party shall be solely responsible for the selection of specific database vendors/data
collectors/data providers, and for the performance (including any breach) of its contracts
between it and such database vendors/data collectors, to which no other project partner shall
be a party, and under which no other Contributor assumes any obligation or liability and shall
further warrant that it has the authority to disclose the information, if any, which it provides to
the other parties, and that where legally required and relevant, it has obtained appropriate
informed consents from all the individuals involved.
Any party which provides any recorded data or information to another party in connection with
the project will not include any information as defined by Article 2 section (a) of the European
Data Protection Directive, i.e. any information relating to an identified or identifiable natural
person or data subject, where an ‘identifiable person’ is one who can be identified, directly or
indirectly, in particular by reference to an identification number or to one or more factors
specific to his or her physical, physiological, mental, economic, cultural or social identity
("Personal Data").
To this end, the providing party will take all necessary steps to ensure that the Information is
"de-identified", i.e. that all Personal Data is removed from the provided information, made
illegible, or otherwise made inaccessible to the receiving parties prior to provision.

5.2 Ethical issues related to the involvement of users

Provided that the privacy of users’ data will be adequately covered, as described above, all
users involved will be explicitly requested for their consent regarding their participation in the
study. The data privacy policy will be clearly communicated and it will be possible to withdraw
from the project at any stage. A withdrawal will imply the complete and permanent removal of
all the users’ data from the project database.
In the case of the involvement of children in activities promoted in collaboration with the
primary and secondary schools in the Swiss case study, the consent to participate in the
project will be requested in written form, to be signed by the children’s parents or legal tutors.
The data collected by the SmartH2O project can be of sensitive nature, as it contains detailed
information about household water consumption correlated with socio-economic and
psychographic characteristics, which, if abused, misused and processed without the data
owner consent, could bring severe damage to both the individual consumers and the
reputation of the water utilities, and the SmartH2O project.

SmartH2O – Databases of user information Page 34 D3.1 Version 3.1

5.3 The SmartH2O data governance policy

In order to manage personal data in accordance to the above defined principles, a strict data
governance policy will be thus enforced. It is our opinion that an inherent quality of a data
governance policy is its simplicity. If it is simple and clear, it will be easier to adhere to it, to
implement, and to make sure it is properly enforced.

Our data governance policy revolves around the following principles:
-­‐ the water utility is the owner of water meter data
-­‐ the consumer is the owner of the psychographic data (values, opinions, attitudes,

interests) and of socio-economic data (household type, number of occupants, level of
income, etc.)

-­‐ the water utility has the right to select which subset of its water meter data connect to the
SmartH2O database;

-­‐ the consumer has the right to access all his/her data, and has also the right to terminate
its participation in the SmartH2O platform at any time.

Our data governance policy defines the rights for data protection:
-­‐ The consumer and the water utility have the right to have their data being adequately

protected from violations. Data must be secured and only authorised partners of the
SmartH2O project can access it.

-­‐ The water utility data will be accessible only to those partner institutions who have signed
a non-disclosure agreement with the water utility. The water utility can renounce to such
an agreement, and grant access to all partners in the project.

-­‐ The consumer data will be made accessible to all SmartH2O project partners only with
the user consent. The user gives his/her consent by accepting a Terms of Use
agreement when signing in for the first time on the SmartH2O platform.

Our data governance policy specifies the technological solution adopted to guarantee that the
principles and the data protection rights are enforced:
-­‐ Only the user will have access to data regarding his/her identity: home address, name

and surname are separated from all other data.
-­‐ User specific data are transmitted over a secured connection to the SmartH2O platform,

where they are safely protected. Such data will not leave the SmartH2O platform, in order
to minimise the risk of interception and to have a single failure point.

-­‐ All SmartH2O user profiling algorithms will thus process anonymised data. Anonymised
data will be transmitted by the SmartH2O platform to the SmartH2O partners’ servers in
order to process them.

The data governance policy defines the technical solutions to protect the data during the work
flows of the development phase. It regards:

a. Data in transit (data that is transferred between the SmartH2O development server
and other network nodes)

• Firewall FortiGate 300C. No external non-authorized access;
• IPSEC VPN access for listed IPs. The partners will send their authorized IPs.

They will receive a ready configured VPN client. The partners will connect
through VPN in order to access the platform applications and services;

• Secured FTP to upload data files to the development SmartH2O server. The
FTP server uses a custom configuration;

• Secured HTTP for application access over the internet;
• User / password authetication for application access over the internet;

SmartH2O – Databases of user information Page 35 D3.1 Version 3.1

b. Data in use (active data under constant change, stored in RAM)
• Processing data on unique physical server with unique external IP;
• Setting access rights for data manipulation at application level;
• Implementing encryption protocols for accesing data via web-services;
• Application whitelistening;

c. Data at rest (inactive data stored in off-site database backups, archives, tapes,

CDs/DVDs, USB sticks)
• Private datacenter with limited access (4 IT staff) card based;
• Unique IT admin for the development SmartH2O server;
• Policy of No Off-site data backup allowed;

SmartH2O – Databases of user information Page 36 D3.1 Version 3.1

6. Data management tools
SmartH20 uses data amangement tools at both runtime and design time.

• Runtime data management tools comprise the Smart Meter Data Management
Component (SMDMC), which has been built ad hoc to support the acquisition of
consumption data from heterogeneous smart sensor infrastructures.

• Design time data management tool address the modelling and creation of the
database schema code, which supports the creation and evolutive maintenance of
the SQL schema of the SmartH20 database. This task has been addressed using the
Domain Modeller of the WebRatio tool suite.

6.1 Smart Meter Data Management Component – SMDMC

The Smart Meter Data Management component implements the data acquisition and data
assimilation in the SmartH2O Database.

6.1.1 Role and Functionality
This platform component implements Use Case 8.1 stated in D2.2 Final Requirements
deliverable: “Collecting consumption data with smart meters”. This component was designed
to acquire and consolidate raw water metered usage consumption data. Its main functional
and technical requirements are presented below:

• Facilitate Water Utility company the required communication infrastructure to transfer
water metered usage data to SmartH2O platform

• Process received data and save results into SmartH2O platform database
• Ensure logging of data processing
• Ensure data security and integrity during transfer, processing and storage stages
• Ensure a scalable computing and storage architecture able to process large amounts

of data sent with high-frequency
A more detailed description of component’s functional requirements will be found in D2.3
Functional Requirements Deliverable (not yet delivered).

6.1.2 System Flow
The structure of the network components where the various elements of the SMDMC
architecture are deployed is presented in Figure 5.

SmartH2O – Databases of user information Page 37 D3.1 Version 3.1

Figure 5. A graphical overview of the network architecture of SMDMC.

The high level workflow of transferring, receiving, storing and processing of the smart counter
files is made of the following steps:
Step 1: the Smart H2O Admin (the Receiver of data) transmits to Water Utility (the Sender of
data) the parameters and credentials for accessing the Secured FTP (SFTP) server. The
SFTP server resides in the DMZ of a data center protected firewall router.
Step 2: The Provider connects, authenticates and uploads the data files containing smart
water counter readings to the SFTP server. After successfully receiving the files, the Sender
then moves the data files to the File Storage, which resides in the non-DMZ LAN of the data
center.
Step 3: The providing partner will upload the MD5 signature of the uploaded archive. This will
be used by the Receiver for successfully validating the file transfer.
Step 4: The SMDMC running on the SmartH2O application server process the data files and
stores the data in a local database protected by a build-in security layer. The processing
consists in:

• parsing received files,
• detecting and report data inconsistencies,
• aggregating counter consumption to household level,
• saving aggregated data in database.

Step 5: After processing, the data files are automatically encrypted and moved in a dedicated
zone on File Storage. A log will be available for the Sender partner to acknowledge the
outcome of the process.

Step 6: The data saved in the database is accessed, processed and displayed by
user/password authenticated applications according to the business logic.

6.1.3 Architecture and Deployment
To ensure processing scalability, BigData technologies were employed in design of SMDMC
component. The data files processing technology is based on Apache Hadoop components
and infrastructure for distributed and parallel processing. The deployment architecture of
SMDMC is presented in Figure 6.

Figure 6. The deployed components of SMDMC.

Due to its distributed architecture, the processing power can be easily increased by
increasing the number of processing nodes of Apache Hadoop, similar to node HD4 and
HD5.
The Development Environment deployment is based on WMWare ESXi virtualization
solution.

SmartH2O – Databases of user information Page 38 D3.1 Version 3.1

The Production Environment deployment can be done on OpenStack virtualization layer that
can manage large number of hardware resource providing scalability and high-availability.
A more detailed description of the component’s architecture and deployment can be found in
D6.2 Platform Architecture and Design

6.1.4 Data Security
We have adopted technical solutions to protect the water usage data files during the transfer,
processing and storage phases. In synthesis these are:

d. Data in transit (data that is transferred between the SmartH2O development server
and other network nodes):

• Router Firewall. No external non-authorized access;
• IPSEC VPN access for listed IPs. The partners will send their authorized IP

addresses. They will receive a ready configured VPN client. The partners will
connect through VPN in order to access the platform applications and
services;

• Secured FTP to upload data files to the development SmartH2O server. The
FTP server uses a custom configuration;

• Secured HTTP for application access over the internet;
• User / password authentication for application access over the internet;

e. Data in use (active data under constant change, stored in RAM)

• Processing data on unique physical server with unique external IP;
• Setting access rights for data manipulation at application level;
• Implementing encryption protocols for accessing data via web-services;
• Application whitelistening;

f. Data at rest (inactive data stored in off-site database backups, archives, tapes,
CDs/DVDs, USB sticks)

• Private datacenter with limited access (4 IT staff) card based;
• Unique IT Admin for the development SmartH2O server;
• Policy of No Off-site data backup allowed;

6.2 WebRatio Domain Modeler

WebRatio11 is a tool that supports database, SOA, BPM, web and mobile application design,
exploiting a conceptual modelling approach coupled to code generation. WebRatio covers the
development phases of data design and application design, and supports implementation by
automating the production of the relational database and of the application interfaces. More
precisely, WebRatio focuses on five main aspects:

• Data design: it supports the design of Entity-Relationship data schemas, with a
graphical user interface for drawing and specifying the properties of entities,
relationships, attributes, and generalization hierarchies.

• Application design: it assists the design of interfaces for web and mobile applications,
providing functions for drawing and specifying the properties of such as artefacts
view containers, areas, pages, components, and interaction flows, expressed using
the OMG IFML standard12.

• Data Mapping: it permits declaring the set of data sources to which the conceptual
data schema has to be mapped, and automatically translates Entity-Relationship

11 www.webratio.com
12 www.omg.org/spec/ifml

SmartH2O – Databases of user information Page 39 D3.1 Version 3.1

diagrams and UML OCL expressions into relational database tables and views.
• Presentation design: it offers functionality for defining the presentation style of the

application, allowing the designer to create style sheets and associate them to
interface elements, and organize page layout, by arranging the relative position of
components in the page.

• Code generation: it automatically translates conceptual models into running Web
applications built on top of the JEE architecture.

6.2.1 Database design
WebRatio provides a graphical user interface, which allows designers to compose the Entity-
Relationship diagram corresponding to the database that will host the data of the application.
Figure 7 shows a snapshot of the WebRatio user interface, which is organized into the typical
four areas of application development tools:

• A project tree (upper left frame), organising all the elements of the application project.
• A work area (upper right frame), where the specifications are visually edited.
• A property frame (lower left frame), where the properties of individual elements can

be set.
• A message area (lower right frame), where messages and warnings are displayed.

In particular, Figure 7 shows the Entity-Relationship diagram of a sample database design.
The work area visualizes the data schema, and the designer can define entities, attributes,
relationships, and generalizations.
The elements displayed in the diagram are also presented in the project tree, where they are
hierarchically organized in folders. The properties of the currently selected element of the
schema are displayed and can be edited in a property frame.
A WebRatio application project consists of one or more Entity-Relationship diagrams and of a
set of IFML site view specifications.
WebRatio gives support to the design of the database support for applications using a Role
Based Access Control (RBAC) approach.
To this end, a default database conceptual schema consisting of the User, Group, and
Module entities and of their RBAC relationships is automatically added to each project, and
the developer can extend it with additional entities and relationships reflecting further aspects
of the permission system he wants to design.

SmartH2O – Databases of user information Page 40 D3.1 Version 3.1

Figure 7: Database design in WebRatio

WebRatio supports also the visual definition of derived data, i.e., data that is calculated
based on other stored or calculated data.
A wizard (Figure 8) can be invoked to specify the expression for computing a derived entity,
attribute or relationship.
Such expression, written in a subset of the OCL language, is automatically translated into a
SQL view, installable into the application database.

SmartH2O – Databases of user information Page 41 D3.1 Version 3.1

Figure 8: Derivation wizard, at work on the definition of a calculated attributed

6.2.2 Data mapping and database creation
WebRatio assists the data implementation phase, by associating the application to the data
sources where content resides. Three data implementation architectures described in are
supported (dedicated, replicated, and online database), with the highest level of assistance
for the dedicated database solution.

• Dedicated Database: this situation occurs when the content does not exist prior to
the development of the application. In this case, the development of the Web or
mobile application comprises also the construction of a dedicated database,
purposely built for storing the content to be published. Content maintenance is done
with an ad hoc application, for example, with a content management interface.
Typical applications with dedicated databases are B2C and corporate portals, which
are conceived specifically to collect and deliver content that is not reused outside the
Web / mobile application.

• Replicated Database: this situation occurs when the content is stored in one or
more corporate data sources, for example in an operational databases or legacy
systems, and is periodically copied into a database dedicated to the Web application.
The Web or mobile application owns and publishes a read-only copy of the corporate
data and the original content continues to be created and updated in its native
location. An example of this scenario could is the SmartH20 consumer portal that
publishes consumption data maintained in the utility data collection system.

• On-line Database: the Web application has direct access to the corporate data, to
publish the current version of the content. In this case, the Web application has no

SmartH2O – Databases of user information Page 42 D3.1 Version 3.1

dedicated database but connects directly to the external data sources, for either
reading or writing content. An example of this category of applications is a Web-
based or mobile reservation system, allowing users to see and change the up-to-date
version of the reservation database.

The connection to the data sources exploits the JDBC and Hibernate APis; additional kinds of
data sources can be added, by programming the services for connecting to them.
The data implementation activity proceeds by mapping the Entity-Relationship diagram onto
the defined data sources; the user declares the data sources, and binds entities and
relationships to tables. The mapping information, associating entities, relationships, and
attributes with tables and columns, is stored in a configuration file.
If the database for the application content does not exist, WebRatio can automatically create
the default standard database, by applying the standard translation rules from entity and
relationships to relational tables, with a Generate SQL command.
The tool automatically creates the standard tables and binds the entities and relationships of
the project to them. Then the user populates the database manually or with a data replication
tool. Figure 9 shows the SQL code generated by WebRatio from the ER schema of Figure 7.

Figure 9: The output of the Generate SWL command

If Entity-Relationship schema contains derived data, the generation command translates the
OCL expressions of the derived schema elements, and produces a source file containing the
SQL statements defining the relational views equivalent to the OCL expressions, which can
be automatically or manually installed into the appropriate data source.

SmartH2O – Databases of user information Page 43 D3.1 Version 3.1

All entities, relationships, and derived elements must be correctly mapped before generating
the code and running the application, otherwise the code generation may produce incomplete
results. WebRatio also support database evolution and maintenance.
The tool can check the alignment between the Entity-Relationship diagram and the physical
databases, thus facilitating the tracking of changes in either of the two levels. Figure 10
shows the interface of the Database Synchronizer wizard, which helps the developer assess
the changes in the ER diagram and in the database relational schema that need to be
propagated after a change.

Figure 10: Two-way ER-to-Database synchronization command

SmartH2O – Databases of user information Page 44 D3.1 Version 3.1

7. Conclusions and future work

The conducted review on past residential water end use studies, along with initial iterations
with water consumers and with the water utilities taking part at the SmartH2O project (i.e.,
TWUL and SES), has led to the identification of a set of potentially relevant variables
influencing water consumption. Such variables are included in the SmartH2O database,
which has been defined in terms of Entity-Relationship models. A first prototype of the
SmartH2O database has been implemented in MySQL 5.6.14. The database structure has
been deliberately kept open and flexible to accommodate additional information coming from
further interactions with the water utilities and the end users.

The database will be populated with data and information on the users provided by the water
utilities or by the users themselves (e.g., through meter readings, surveys and the game with
a purpose application developed in WP4). Automated procedures to populate the database
have been proposed and they will be implemented in SmartH2O platform as soon as data will
become available.

The data that will be gathered will be used for disaggregating water flow data into different
water end use categories and for profiling water users through machine learning and data-
mining algorithms that will be developed in Task 3.2 of the project.

SmartH2O – Databases of user information Page 45 D3.1 Version 3.1

8. Appendix Database creation SQL code

8.1 Consumer Portal subschema

-- MySQL dump 10.13 Distrib 5.6.17, for Win32 (x86)

--

-- Host: localhost Database: consumer_portal_db_v4

-- --

-- Server version 5.6.23-log

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;

/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;

/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;

/*!40101 SET NAMES utf8 */;

/*!40103 SET @OLD_TIME_ZONE=@@TIME_ZONE */;

/*!40103 SET TIME_ZONE='+00:00' */;

/*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */;

/*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS,
FOREIGN_KEY_CHECKS=0 */;

/*!40101 SET @OLD_SQL_MODE=@@SQL_MODE,
SQL_MODE='NO_AUTO_VALUE_ON_ZERO' */;

/*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;

--

-- Table structure for table `alert`

--

DROP TABLE IF EXISTS `alert`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `alert` (

 `oid` int(11) NOT NULL,

 `type` varchar(255) DEFAULT NULL,

 `level` int(11) DEFAULT NULL,

 `date` datetime DEFAULT NULL,

 `neutral_user_oid` int(11) DEFAULT NULL,

 `mail_oid` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `fk_alert_neutral_user` (`neutral_user_oid`),

 KEY `fk_alert_mail` (`mail_oid`),

 CONSTRAINT `fk_alert_mail` FOREIGN KEY (`mail_oid`) REFERENCES
`mail` (`oid`),

 CONSTRAINT `fk_alert_neutral_user` FOREIGN KEY
(`neutral_user_oid`) REFERENCES `neutral_user` (`user_oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

SmartH2O – Databases of user information Page 46 D3.1 Version 3.1

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `bill`

--

DROP TABLE IF EXISTS `bill`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `bill` (

 `oid` int(11) NOT NULL,

 `account_number` varchar(255) DEFAULT NULL,

 `bill_date` date DEFAULT NULL,

 `company` varchar(255) DEFAULT NULL,

 `volume_charge` decimal(19,2) DEFAULT NULL,

 `service_charge` decimal(19,2) DEFAULT NULL,

 `currency` varchar(255) DEFAULT NULL,

 `volume_eur_charge` decimal(19,2) DEFAULT NULL,

 `service_eur_charge` decimal(19,2) DEFAULT NULL,

 `exchange_rate` decimal(19,2) DEFAULT NULL,

 `exchange_date` date DEFAULT NULL,

 `household_oid` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `fk_bill_household` (`household_oid`),

 CONSTRAINT `fk_bill_household` FOREIGN KEY (`household_oid`)
REFERENCES `household` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `billing_price`

--

DROP TABLE IF EXISTS `billing_price`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `billing_price` (

 `oid` int(11) NOT NULL,

 `month` varchar(255) DEFAULT NULL,

 `year` int(11) DEFAULT NULL,

 `company` varchar(255) DEFAULT NULL,

 `monthly_service_charge` decimal(19,2) DEFAULT NULL,

 `monthly_volume_charge` decimal(19,2) DEFAULT NULL,

 PRIMARY KEY (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

SmartH2O – Databases of user information Page 47 D3.1 Version 3.1

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `billing_price_bill`

--

DROP TABLE IF EXISTS `billing_price_bill`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `billing_price_bill` (

 `billing_price_oid` int(11) NOT NULL,

 `bill_oid` int(11) NOT NULL,

 PRIMARY KEY (`billing_price_oid`,`bill_oid`),

 KEY `fk_billing_price_bill_billing` (`billing_price_oid`),

 KEY `fk_billing_price_bill_bill` (`bill_oid`),

 CONSTRAINT `fk_billing_price_bill_bill` FOREIGN KEY (`bill_oid`)
REFERENCES `bill` (`oid`),

 CONSTRAINT `fk_billing_price_bill_billing` FOREIGN KEY
(`billing_price_oid`) REFERENCES `billing_price` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `building`

--

DROP TABLE IF EXISTS `building`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `building` (

 `oid` int(11) NOT NULL,

 `building_garden_area` decimal(19,2) DEFAULT NULL,

 `building_pool_volume` decimal(19,2) DEFAULT NULL,

 `age` int(11) DEFAULT NULL,

 `building_size` decimal(19,2) DEFAULT NULL,

 `residence_type` varchar(255) DEFAULT NULL,

 `address` varchar(255) DEFAULT NULL,

 `building_garden` bit(1) DEFAULT NULL,

 `building_pool` bit(1) DEFAULT NULL,

 `district_oid` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `fk_building_district` (`district_oid`),

 CONSTRAINT `fk_building_district` FOREIGN KEY (`district_oid`)
REFERENCES `district` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

SmartH2O – Databases of user information Page 48 D3.1 Version 3.1

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `consumer_segment`

--

DROP TABLE IF EXISTS `consumer_segment`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `consumer_segment` (

 `oid` int(11) NOT NULL,

 `name` varchar(255) DEFAULT NULL,

 `description` varchar(255) DEFAULT NULL,

 PRIMARY KEY (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `consumer_segment_neutral_user`

--

DROP TABLE IF EXISTS `consumer_segment_neutral_user`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `consumer_segment_neutral_user` (

 `consumer_segment_oid` int(11) NOT NULL,

 `neutral_user_oid` int(11) NOT NULL,

 PRIMARY KEY (`consumer_segment_oid`,`neutral_user_oid`),

 KEY `fk_consumer_segment_neutral_us` (`consumer_segment_oid`),

 KEY `fk_consumer_segment_neutral_2` (`neutral_user_oid`),

 CONSTRAINT `fk_consumer_segment_neutral_2` FOREIGN KEY
(`neutral_user_oid`) REFERENCES `neutral_user` (`user_oid`),

 CONSTRAINT `fk_consumer_segment_neutral_us` FOREIGN KEY
(`consumer_segment_oid`) REFERENCES `consumer_segment` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `device_class`

--

DROP TABLE IF EXISTS `device_class`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `device_class` (

SmartH2O – Databases of user information Page 49 D3.1 Version 3.1

 `oid` int(11) NOT NULL,

 `name` varchar(255) DEFAULT NULL,

 `number` int(11) DEFAULT NULL,

 `household_oid` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `fk_device_class_household` (`household_oid`),

 CONSTRAINT `fk_device_class_household` FOREIGN KEY
(`household_oid`) REFERENCES `household` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `device_consumption`

--

DROP TABLE IF EXISTS `device_consumption`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `device_consumption` (

 `oid` int(11) NOT NULL,

 `start_date` datetime DEFAULT NULL,

 `end_date` datetime DEFAULT NULL,

 `device_consumption` decimal(19,2) DEFAULT NULL,

 `device_class_oid` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `fk_device_consumption_device_c` (`device_class_oid`),

 CONSTRAINT `fk_device_consumption_device_c` FOREIGN KEY
(`device_class_oid`) REFERENCES `device_class` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `district`

--

DROP TABLE IF EXISTS `district`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `district` (

 `oid` int(11) NOT NULL,

 `zipcode` varchar(255) DEFAULT NULL,

 `country` varchar(255) DEFAULT NULL,

 `city` varchar(255) DEFAULT NULL,

 `name` varchar(255) DEFAULT NULL,

 PRIMARY KEY (`oid`)

SmartH2O – Databases of user information Page 50 D3.1 Version 3.1

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `feature`

--

DROP TABLE IF EXISTS `feature`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `feature` (

 `oid` int(11) NOT NULL,

 `type` varchar(255) DEFAULT NULL,

 `level` int(11) DEFAULT NULL,

 `consumer_segment_oid` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `fk_feature_consumer_segment` (`consumer_segment_oid`),

 CONSTRAINT `fk_feature_consumer_segment` FOREIGN KEY
(`consumer_segment_oid`) REFERENCES `consumer_segment` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `group`

--

DROP TABLE IF EXISTS `group`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `group` (

 `oid` int(11) NOT NULL,

 `groupname` varchar(255) DEFAULT NULL,

 `module_oid` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `fk_group_module` (`module_oid`),

 CONSTRAINT `fk_group_module` FOREIGN KEY (`module_oid`) REFERENCES
`module` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `group_module`

--

DROP TABLE IF EXISTS `group_module`;

SmartH2O – Databases of user information Page 51 D3.1 Version 3.1

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `group_module` (

 `group_oid` int(11) NOT NULL,

 `module_oid` int(11) NOT NULL,

 PRIMARY KEY (`group_oid`,`module_oid`),

 KEY `fk_group_module_group` (`group_oid`),

 KEY `fk_group_module_module` (`module_oid`),

 CONSTRAINT `fk_group_module_group` FOREIGN KEY (`group_oid`)
REFERENCES `group` (`oid`),

 CONSTRAINT `fk_group_module_module` FOREIGN KEY (`module_oid`)
REFERENCES `module` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `household`

--

DROP TABLE IF EXISTS `household`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `household` (

 `oid` int(11) NOT NULL,

 `utilityid` varchar(255) DEFAULT NULL,

 `household_size` decimal(19,2) DEFAULT NULL,

 `ownership` bit(1) DEFAULT NULL,

 `number_occupants` int(11) DEFAULT NULL,

 `number_pets` int(11) DEFAULT NULL,

 `household_garden_area` decimal(19,2) DEFAULT NULL,

 `household_pool_volume` decimal(19,2) DEFAULT NULL,

 `second` bit(1) DEFAULT NULL,

 `public` bit(1) DEFAULT NULL,

 `visible` bit(1) DEFAULT NULL,

 `pets` bit(1) DEFAULT NULL,

 `household_pool` bit(1) DEFAULT NULL,

 `household_garden` bit(1) DEFAULT NULL,

 `family_household` bit(1) DEFAULT NULL,

 `consumption_range` varchar(255) DEFAULT NULL,

 `saving_motivation` varchar(255) DEFAULT NULL,

 `family_id` varchar(255) DEFAULT NULL,

 `smart_meter_oid` int(11) DEFAULT NULL,

 `building_oid` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `fk_household_smart_meter` (`smart_meter_oid`),

SmartH2O – Databases of user information Page 52 D3.1 Version 3.1

 KEY `fk_household_building` (`building_oid`),

 CONSTRAINT `fk_household_building` FOREIGN KEY (`building_oid`)
REFERENCES `building` (`oid`),

 CONSTRAINT `fk_household_smart_meter` FOREIGN KEY
(`smart_meter_oid`) REFERENCES `smart_meter` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `household_consumption`

--

DROP TABLE IF EXISTS `household_consumption`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `household_consumption` (

 `oid` int(11) NOT NULL,

 `consumption` decimal(19,2) DEFAULT NULL,

 `start_date` datetime DEFAULT NULL,

 `end_date` datetime DEFAULT NULL,

 `household_oid` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `fk_household_consumption_house` (`household_oid`),

 CONSTRAINT `fk_household_consumption_house` FOREIGN KEY
(`household_oid`) REFERENCES `household` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `mail`

--

DROP TABLE IF EXISTS `mail`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `mail` (

 `oid` int(11) NOT NULL,

 `description` varchar(255) DEFAULT NULL,

 `subject` varchar(255) DEFAULT NULL,

 `body` longtext,

 `language` varchar(255) DEFAULT NULL,

 PRIMARY KEY (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

SmartH2O – Databases of user information Page 53 D3.1 Version 3.1

--

-- Table structure for table `media_asset`

--

DROP TABLE IF EXISTS `media_asset`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `media_asset` (

 `oid` int(11) NOT NULL,

 `title` varchar(255) DEFAULT NULL,

 `description` varchar(255) DEFAULT NULL,

 `duration` decimal(19,2) DEFAULT NULL,

 `author` varchar(255) DEFAULT NULL,

 `media` varchar(255) DEFAULT NULL,

 PRIMARY KEY (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `meter_reading`

--

DROP TABLE IF EXISTS `meter_reading`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `meter_reading` (

 `oid` int(11) NOT NULL,

 `reading_date_time` datetime DEFAULT NULL,

 `company` varchar(255) DEFAULT NULL,

 `total_consumption` decimal(19,2) DEFAULT NULL,

 `smart_meter_oid` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `fk_meter_reading_smart_meter` (`smart_meter_oid`),

 CONSTRAINT `fk_meter_reading_smart_meter` FOREIGN KEY
(`smart_meter_oid`) REFERENCES `smart_meter` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `module`

--

DROP TABLE IF EXISTS `module`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

SmartH2O – Databases of user information Page 54 D3.1 Version 3.1

CREATE TABLE `module` (

 `oid` int(11) NOT NULL,

 `moduleid` varchar(255) DEFAULT NULL,

 `moduledomainname` varchar(255) DEFAULT NULL,

 PRIMARY KEY (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `neutral_user`

--

DROP TABLE IF EXISTS `neutral_user`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `neutral_user` (

 `user_oid` int(11) NOT NULL,

 `registration_date` date DEFAULT NULL,

 `family_role` varchar(255) DEFAULT NULL,

 `house_holder` bit(1) DEFAULT NULL,

 `educational_level` varchar(255) DEFAULT NULL,

 `income_rate` varchar(255) DEFAULT NULL,

 `currency` varchar(255) DEFAULT NULL,

 `public` bit(1) DEFAULT NULL,

 `language` varchar(255) DEFAULT NULL,

 `temperature_unit` varchar(255) DEFAULT NULL,

 `length_unit` varchar(255) DEFAULT NULL,

 `household_oid` int(11) DEFAULT NULL,

 PRIMARY KEY (`user_oid`),

 KEY `fk_neutral_user_household` (`household_oid`),

 KEY `fk_neutral_user_user` (`user_oid`),

 CONSTRAINT `fk_neutral_user_household` FOREIGN KEY
(`household_oid`) REFERENCES `household` (`oid`),

 CONSTRAINT `fk_neutral_user_user` FOREIGN KEY (`user_oid`)
REFERENCES `user` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `neutral_user_mediaasset`

--

DROP TABLE IF EXISTS `neutral_user_mediaasset`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

SmartH2O – Databases of user information Page 55 D3.1 Version 3.1

CREATE TABLE `neutral_user_mediaasset` (

 `neutral_user_oid` int(11) NOT NULL,

 `media_asset_oid` int(11) NOT NULL,

 PRIMARY KEY (`neutral_user_oid`,`media_asset_oid`),

 KEY `fk_neutral_user_mediaasset_neu` (`neutral_user_oid`),

 KEY `fk_neutral_user_mediaasset_med` (`media_asset_oid`),

 CONSTRAINT `fk_neutral_user_mediaasset_med` FOREIGN KEY
(`media_asset_oid`) REFERENCES `media_asset` (`oid`),

 CONSTRAINT `fk_neutral_user_mediaasset_neu` FOREIGN KEY
(`neutral_user_oid`) REFERENCES `neutral_user` (`user_oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `neutral_user_tip`

--

DROP TABLE IF EXISTS `neutral_user_tip`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `neutral_user_tip` (

 `neutral_user_oid` int(11) NOT NULL,

 `tip_oid` int(11) NOT NULL,

 PRIMARY KEY (`neutral_user_oid`,`tip_oid`),

 KEY `fk_neutral_user_tip_neutral_us` (`neutral_user_oid`),

 KEY `fk_neutral_user_tip_tip` (`tip_oid`),

 CONSTRAINT `fk_neutral_user_tip_neutral_us` FOREIGN KEY
(`neutral_user_oid`) REFERENCES `neutral_user` (`user_oid`),

 CONSTRAINT `fk_neutral_user_tip_tip` FOREIGN KEY (`tip_oid`)
REFERENCES `tip` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `smart_meter`

--

DROP TABLE IF EXISTS `smart_meter`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `smart_meter` (

 `oid` int(11) NOT NULL,

 `smart_meter_id` varchar(255) DEFAULT NULL,

 `building_oid` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `fk_smart_meter_building` (`building_oid`),

SmartH2O – Databases of user information Page 56 D3.1 Version 3.1

 CONSTRAINT `fk_smart_meter_building` FOREIGN KEY (`building_oid`)
REFERENCES `building` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `tip`

--

DROP TABLE IF EXISTS `tip`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `tip` (

 `oid` int(11) NOT NULL,

 `name` varchar(255) DEFAULT NULL,

 `header` varchar(255) DEFAULT NULL,

 `body` longtext,

 `tipdate` date DEFAULT NULL,

 PRIMARY KEY (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `unit_of_measurement`

--

DROP TABLE IF EXISTS `unit_of_measurement`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `unit_of_measurement` (

 `oid` int(11) NOT NULL,

 `physical_quantity` varchar(255) DEFAULT NULL,

 `primary_unit` varchar(255) DEFAULT NULL,

 `secondary_unit` varchar(255) DEFAULT NULL,

 `conversion_coefficient` decimal(19,2) DEFAULT NULL,

 PRIMARY KEY (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `user`

--

DROP TABLE IF EXISTS `user`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

SmartH2O – Databases of user information Page 57 D3.1 Version 3.1

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `user` (

 `oid` int(11) NOT NULL,

 `username` varchar(255) DEFAULT NULL,

 `password` varchar(255) DEFAULT NULL,

 `email` varchar(255) DEFAULT NULL,

 `first_name` varchar(255) DEFAULT NULL,

 `last_name` varchar(255) DEFAULT NULL,

 `birth_date` varchar(255) DEFAULT NULL,

 `internal` bit(1) DEFAULT NULL,

 `group_oid` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `fk_user_group` (`group_oid`),

 CONSTRAINT `fk_user_group` FOREIGN KEY (`group_oid`) REFERENCES
`group` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `user_group`

--

DROP TABLE IF EXISTS `user_group`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `user_group` (

 `user_oid` int(11) NOT NULL,

 `group_oid` int(11) NOT NULL,

 PRIMARY KEY (`user_oid`,`group_oid`),

 KEY `fk_user_group_user` (`user_oid`),

 KEY `fk_user_group_group` (`group_oid`),

 CONSTRAINT `fk_user_group_group` FOREIGN KEY (`group_oid`)
REFERENCES `group` (`oid`),

 CONSTRAINT `fk_user_group_user` FOREIGN KEY (`user_oid`)
REFERENCES `user` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `weather_condition`

--

DROP TABLE IF EXISTS `weather_condition`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

SmartH2O – Databases of user information Page 58 D3.1 Version 3.1

CREATE TABLE `weather_condition` (

 `oid` int(11) NOT NULL,

 `start_date` date DEFAULT NULL,

 `end_date` date DEFAULT NULL,

 `rain_fall` decimal(19,2) DEFAULT NULL,

 `average_temperature` decimal(19,2) DEFAULT NULL,

 `district_oid` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `fk_weather_condition_district` (`district_oid`),

 CONSTRAINT `fk_weather_condition_district` FOREIGN KEY
(`district_oid`) REFERENCES `district` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

/*!40103 SET TIME_ZONE=@OLD_TIME_ZONE */;

/*!40101 SET SQL_MODE=@OLD_SQL_MODE */;

/*!40014 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS */;

/*!40014 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS */;

/*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;

/*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;

/*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;

/*!40111 SET SQL_NOTES=@OLD_SQL_NOTES */;

-- Dump completed on 2015-05-05 14:28:42

8.2 Games platform subschema

-- MySQL dump 10.13 Distrib 5.6.17, for Win32 (x86)

--

-- Host: localhost Database: games_platform_db

-- --

-- Server version 5.6.23-log

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;

/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;

/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;

/*!40101 SET NAMES utf8 */;

/*!40103 SET @OLD_TIME_ZONE=@@TIME_ZONE */;

/*!40103 SET TIME_ZONE='+00:00' */;

/*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */;

/*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS,
FOREIGN_KEY_CHECKS=0 */;

/*!40101 SET @OLD_SQL_MODE=@@SQL_MODE,
SQL_MODE='NO_AUTO_VALUE_ON_ZERO' */;

/*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;

SmartH2O – Databases of user information Page 59 D3.1 Version 3.1

--

-- Table structure for table `ability`

--

DROP TABLE IF EXISTS `ability`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `ability` (

 `oid` int(11) NOT NULL,

 `name` varchar(255) DEFAULT NULL,

 PRIMARY KEY (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `achievement`

--

DROP TABLE IF EXISTS `achievement`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `achievement` (

 `oid` int(11) NOT NULL,

 `name` varchar(255) DEFAULT NULL,

 `icon` varchar(255) DEFAULT NULL,

 `category` varchar(255) DEFAULT NULL,

 `description` varchar(255) DEFAULT NULL,

 `of_the_day` bit(1) DEFAULT NULL,

 `points_given` decimal(19,2) DEFAULT NULL,

 `game_oid` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `fk_achievement_game` (`game_oid`),

 CONSTRAINT `fk_achievement_game` FOREIGN KEY (`game_oid`)
REFERENCES `game` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `answer`

--

DROP TABLE IF EXISTS `answer`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `answer` (

SmartH2O – Databases of user information Page 60 D3.1 Version 3.1

 `oid` int(11) NOT NULL,

 `text` varchar(255) DEFAULT NULL,

 `correct` bit(1) DEFAULT NULL,

 `question_oid` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `fk_answer_question` (`question_oid`),

 CONSTRAINT `fk_answer_question` FOREIGN KEY (`question_oid`)
REFERENCES `question` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `game`

--

DROP TABLE IF EXISTS `game`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `game` (

 `oid` int(11) NOT NULL,

 `title` varchar(255) DEFAULT NULL,

 `mode` varchar(255) DEFAULT NULL,

 `genre` varchar(255) DEFAULT NULL,

 `theme` varchar(255) DEFAULT NULL,

 `minimum_players` int(11) DEFAULT NULL,

 `maximum_players` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `game_badge`

--

DROP TABLE IF EXISTS `game_badge`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `game_badge` (

 `oid` int(11) NOT NULL,

 `completion_percentage` decimal(19,2) DEFAULT NULL,

 `start_date` datetime DEFAULT NULL,

 `end_date` datetime DEFAULT NULL,

 `trialsn` int(11) DEFAULT NULL,

 `achievement_oid` int(11) DEFAULT NULL,

 `player_oid` int(11) DEFAULT NULL,

SmartH2O – Databases of user information Page 61 D3.1 Version 3.1

 PRIMARY KEY (`oid`),

 KEY `fk_game_badge_achievement` (`achievement_oid`),

 KEY `fk_game_badge_player` (`player_oid`),

 CONSTRAINT `fk_game_badge_achievement` FOREIGN KEY
(`achievement_oid`) REFERENCES `achievement` (`oid`),

 CONSTRAINT `fk_game_badge_player` FOREIGN KEY (`player_oid`)
REFERENCES `player` (`user_oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `game_play`

--

DROP TABLE IF EXISTS `game_play`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `game_play` (

 `oid` int(11) NOT NULL,

 `start_date` datetime DEFAULT NULL,

 `end_date` datetime DEFAULT NULL,

 `game_oid` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `fk_game_play_game` (`game_oid`),

 CONSTRAINT `fk_game_play_game` FOREIGN KEY (`game_oid`) REFERENCES
`game` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `game_play_action`

--

DROP TABLE IF EXISTS `game_play_action`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `game_play_action` (

 `oid` int(11) NOT NULL,

 `name` varchar(255) DEFAULT NULL,

 `score` decimal(19,2) DEFAULT NULL,

 `player_oid` int(11) DEFAULT NULL,

 `role_oid` int(11) DEFAULT NULL,

 `game_play_oid` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `fk_game_play_action_player` (`player_oid`),

SmartH2O – Databases of user information Page 62 D3.1 Version 3.1

 KEY `fk_game_play_action_role` (`role_oid`),

 KEY `fk_game_play_action_game_play` (`game_play_oid`),

 CONSTRAINT `fk_game_play_action_game_play` FOREIGN KEY
(`game_play_oid`) REFERENCES `game_play` (`oid`),

 CONSTRAINT `fk_game_play_action_player` FOREIGN KEY (`player_oid`)
REFERENCES `player` (`user_oid`),

 CONSTRAINT `fk_game_play_action_role` FOREIGN KEY (`role_oid`)
REFERENCES `role` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `gamestats`

--

DROP TABLE IF EXISTS `gamestats`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `gamestats` (

 `oid` int(11) NOT NULL,

 `hoursplayed` decimal(19,2) DEFAULT NULL,

 `score` decimal(19,2) DEFAULT NULL,

 `game_oid` int(11) DEFAULT NULL,

 `player_oid` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `fk_gamestats_game` (`game_oid`),

 KEY `fk_gamestats_player` (`player_oid`),

 CONSTRAINT `fk_gamestats_game` FOREIGN KEY (`game_oid`) REFERENCES
`game` (`oid`),

 CONSTRAINT `fk_gamestats_player` FOREIGN KEY (`player_oid`)
REFERENCES `player` (`user_oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `player`

--

DROP TABLE IF EXISTS `player`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `player` (

 `user_oid` int(11) NOT NULL,

 `oid` int(11) NOT NULL,

 `nickname` varchar(255) DEFAULT NULL,

 `avatar` varchar(255) DEFAULT NULL,

SmartH2O – Databases of user information Page 63 D3.1 Version 3.1

 `reputation` int(11) DEFAULT NULL,

 `player_type` varchar(255) DEFAULT NULL,

 `player_level` int(11) DEFAULT NULL,

 `experience_points` decimal(19,2) DEFAULT NULL,

 PRIMARY KEY (`user_oid`),

 KEY `fk_player_user` (`user_oid`),

 CONSTRAINT `fk_player_user` FOREIGN KEY (`user_oid`) REFERENCES
`user` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `question`

--

DROP TABLE IF EXISTS `question`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `question` (

 `oid` int(11) NOT NULL,

 `topic` varchar(255) DEFAULT NULL,

 `level` int(11) DEFAULT NULL,

 `text` varchar(255) DEFAULT NULL,

 `closed_ended` bit(1) DEFAULT NULL,

 `utility_question` bit(1) DEFAULT NULL,

 `utility_name` varchar(255) DEFAULT NULL,

 `quiz_oid` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `fk_question_quiz` (`quiz_oid`),

 CONSTRAINT `fk_question_quiz` FOREIGN KEY (`quiz_oid`) REFERENCES
`quiz` (`game_oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `question_instance`

--

DROP TABLE IF EXISTS `question_instance`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `question_instance` (

 `oid` int(11) NOT NULL,

 `date` date DEFAULT NULL,

 `score` decimal(19,2) DEFAULT NULL,

SmartH2O – Databases of user information Page 64 D3.1 Version 3.1

 `guessed` bit(1) DEFAULT NULL,

 `question_oid` int(11) DEFAULT NULL,

 `player_oid` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `fk_question_instance_question` (`question_oid`),

 KEY `fk_question_instance_player` (`player_oid`),

 CONSTRAINT `fk_question_instance_player` FOREIGN KEY
(`player_oid`) REFERENCES `player` (`user_oid`),

 CONSTRAINT `fk_question_instance_question` FOREIGN KEY
(`question_oid`) REFERENCES `question` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `quiz`

--

DROP TABLE IF EXISTS `quiz`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `quiz` (

 `game_oid` int(11) NOT NULL,

 `oid` int(11) NOT NULL,

 PRIMARY KEY (`game_oid`),

 KEY `fk_quiz_game` (`game_oid`),

 CONSTRAINT `fk_quiz_game` FOREIGN KEY (`game_oid`) REFERENCES
`game` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `role`

--

DROP TABLE IF EXISTS `role`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `role` (

 `oid` int(11) NOT NULL,

 `name` varchar(255) DEFAULT NULL,

 `game_oid` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `fk_role_game` (`game_oid`),

 CONSTRAINT `fk_role_game` FOREIGN KEY (`game_oid`) REFERENCES
`game` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

SmartH2O – Databases of user information Page 65 D3.1 Version 3.1

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `role_ability`

--

DROP TABLE IF EXISTS `role_ability`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `role_ability` (

 `role_oid` int(11) NOT NULL,

 `ability_oid` int(11) NOT NULL,

 PRIMARY KEY (`role_oid`,`ability_oid`),

 KEY `fk_role_ability_role` (`role_oid`),

 KEY `fk_role_ability_ability` (`ability_oid`),

 CONSTRAINT `fk_role_ability_ability` FOREIGN KEY (`ability_oid`)
REFERENCES `ability` (`oid`),

 CONSTRAINT `fk_role_ability_role` FOREIGN KEY (`role_oid`)
REFERENCES `role` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `user`

--

DROP TABLE IF EXISTS `user`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `user` (

 `oid` int(11) NOT NULL,

 `username` varchar(255) DEFAULT NULL,

 `password` varchar(255) DEFAULT NULL,

 `email` varchar(255) DEFAULT NULL,

 `first_name` varchar(255) DEFAULT NULL,

 `last_name` varchar(255) DEFAULT NULL,

 `birth_date` varchar(255) DEFAULT NULL,

 PRIMARY KEY (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

/*!40103 SET TIME_ZONE=@OLD_TIME_ZONE */;

/*!40101 SET SQL_MODE=@OLD_SQL_MODE */;

/*!40014 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS */;

/*!40014 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS */;

SmartH2O – Databases of user information Page 66 D3.1 Version 3.1

/*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;

/*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;

/*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;

/*!40111 SET SQL_NOTES=@OLD_SQL_NOTES */;

-- Dump completed on 2015-04-30 17:45:13

8.3 Gamification engine subschema
-- MySQL dump 10.13 Distrib 5.6.17, for Win32 (x86)

--

-- Host: localhost Database: community_new_newdata

-- --

-- Server version 5.6.23-log

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;

/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;

/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;

/*!40101 SET NAMES utf8 */;

/*!40103 SET @OLD_TIME_ZONE=@@TIME_ZONE */;

/*!40103 SET TIME_ZONE='+00:00' */;

/*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */;

/*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS,
FOREIGN_KEY_CHECKS=0 */;

/*!40101 SET @OLD_SQL_MODE=@@SQL_MODE,
SQL_MODE='NO_AUTO_VALUE_ON_ZERO' */;

/*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;

--

-- Table structure for table `action_instance`

--

DROP TABLE IF EXISTS `action_instance`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `action_instance` (

 `oid` int(11) NOT NULL,

 `executor` varchar(255) DEFAULT NULL,

 `date` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE
CURRENT_TIMESTAMP,

 `score` decimal(19,2) DEFAULT NULL,

 `description` varchar(255) DEFAULT NULL,

 `tag` varchar(255) DEFAULT NULL,

 `link` varchar(255) DEFAULT NULL,

 `rank_oid` int(11) DEFAULT NULL,

 `action_type_oid` int(11) DEFAULT NULL,

SmartH2O – Databases of user information Page 67 D3.1 Version 3.1

 `object_key` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `idx_action_instance_rank` (`rank_oid`),

 KEY `idx_action_instance_action_typ` (`action_type_oid`),

 CONSTRAINT `fk_action_instance_action_type` FOREIGN KEY
(`action_type_oid`) REFERENCES `action_type` (`oid`),

 CONSTRAINT `fk_action_instance_rank` FOREIGN KEY (`rank_oid`)
REFERENCES `community_user` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Temporary table structure for view
`action_instance_action_area_vi`

--

DROP TABLE IF EXISTS `action_instance_action_area_vi`;

/*!50001 DROP VIEW IF EXISTS `action_instance_action_area_vi`*/;

SET @saved_cs_client = @@character_set_client;

SET character_set_client = utf8;

/*!50001 CREATE TABLE `action_instance_action_area_vi` (

 `oid` tinyint NOT NULL,

 `der_attr` tinyint NOT NULL

) ENGINE=MyISAM */;

SET character_set_client = @saved_cs_client;

--

-- Temporary table structure for view `action_instance_daily_vi`

--

DROP TABLE IF EXISTS `action_instance_daily_vi`;

/*!50001 DROP VIEW IF EXISTS `action_instance_daily_vi`*/;

SET @saved_cs_client = @@character_set_client;

SET character_set_client = utf8;

/*!50001 CREATE TABLE `action_instance_daily_vi` (

 `action_type_oid` tinyint NOT NULL,

 `date` tinyint NOT NULL,

 `daily_occurrence` tinyint NOT NULL

) ENGINE=MyISAM */;

SET character_set_client = @saved_cs_client;

--

-- Temporary table structure for view `action_instance_name_view`

--

SmartH2O – Databases of user information Page 68 D3.1 Version 3.1

DROP TABLE IF EXISTS `action_instance_name_view`;

/*!50001 DROP VIEW IF EXISTS `action_instance_name_view`*/;

SET @saved_cs_client = @@character_set_client;

SET character_set_client = utf8;

/*!50001 CREATE TABLE `action_instance_name_view` (

 `oid` tinyint NOT NULL,

 `der_attr` tinyint NOT NULL

) ENGINE=MyISAM */;

SET character_set_client = @saved_cs_client;

--

-- Table structure for table `action_type`

--

DROP TABLE IF EXISTS `action_type`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `action_type` (

 `oid` int(11) NOT NULL,

 `check_time_elapsed` tinyint(1) DEFAULT NULL,

 `milliseconds_time_elapsed` int(11) DEFAULT NULL,

 `name` varchar(255) DEFAULT NULL,

 `repeatable` tinyint(1) DEFAULT NULL,

 `score` decimal(19,2) DEFAULT NULL,

 `reputation` tinyint(1) DEFAULT NULL,

 `participation` tinyint(1) DEFAULT NULL,

 `area` varchar(255) DEFAULT NULL,

 `description` varchar(255) DEFAULT NULL,

 `gamified_application_oid` int(11) DEFAULT NULL,

 `active` bit(1) DEFAULT NULL,

 `thematic_area_oid` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `idx_action_type_gamified_appli` (`gamified_application_oid`),

 KEY `fk_action_type_thematic_area` (`thematic_area_oid`),

 CONSTRAINT `fk_action_type_gamified_applic` FOREIGN KEY
(`gamified_application_oid`) REFERENCES `gamified_application`
(`oid`),

 CONSTRAINT `fk_action_type_thematic_area` FOREIGN KEY
(`thematic_area_oid`) REFERENCES `thematic_area` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `badge_action`

--

SmartH2O – Databases of user information Page 69 D3.1 Version 3.1

DROP TABLE IF EXISTS `badge_action`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `badge_action` (

 `badge_type_oid` int(11) NOT NULL,

 `action_type_oid` int(11) NOT NULL,

 PRIMARY KEY (`badge_type_oid`,`action_type_oid`),

 KEY `idx_badge_action_badge_type` (`badge_type_oid`),

 KEY `idx_badge_action_action_type` (`action_type_oid`),

 CONSTRAINT `fk_badge_action_action_type` FOREIGN KEY
(`action_type_oid`) REFERENCES `action_type` (`oid`),

 CONSTRAINT `fk_badge_action_badge_type` FOREIGN KEY
(`badge_type_oid`) REFERENCES `badge_type` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `badge_instance`

--

DROP TABLE IF EXISTS `badge_instance`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `badge_instance` (

 `oid` int(11) NOT NULL,

 `score` decimal(19,2) DEFAULT NULL,

 `date` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE
CURRENT_TIMESTAMP,

 `rank_oid` int(11) DEFAULT NULL,

 `badge_type_oid` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `idx_badge_instance_rank` (`rank_oid`),

 KEY `idx_badge_instance_badge_type` (`badge_type_oid`),

 CONSTRAINT `fk_badge_instance_badge_type` FOREIGN KEY
(`badge_type_oid`) REFERENCES `badge_type` (`oid`),

 CONSTRAINT `fk_badge_instance_rank` FOREIGN KEY (`rank_oid`)
REFERENCES `community_user` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `badge_type`

--

DROP TABLE IF EXISTS `badge_type`;

SmartH2O – Databases of user information Page 70 D3.1 Version 3.1

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `badge_type` (

 `oid` int(11) NOT NULL,

 `area` varchar(255) DEFAULT NULL,

 `needed_score` decimal(19,2) DEFAULT NULL,

 `image` varchar(255) DEFAULT NULL,

 `hd_image` varchar(255) DEFAULT NULL,

 `key` varchar(255) DEFAULT NULL,

 `importance` int(11) DEFAULT NULL,

 `description` varchar(255) DEFAULT NULL,

 `checked_image` varchar(255) DEFAULT NULL,

 `title` varchar(255) DEFAULT NULL,

 `hd_checked_image` varchar(255) DEFAULT NULL,

 `sort_number` int(11) DEFAULT NULL,

 `active` bit(1) DEFAULT NULL,

 `image_2` varchar(255) DEFAULT NULL,

 `imageblob` longblob,

 `hd_image_2` varchar(255) DEFAULT NULL,

 `hd_imageblob` longblob,

 `checked_image_2` varchar(255) DEFAULT NULL,

 `checked_imageblob` longblob,

 `hd_checked_image_2` varchar(255) DEFAULT NULL,

 `hd_checked_imageblob` longblob,

 `thematic_area_oid` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `fk_badge_type_thematic_area` (`thematic_area_oid`),

 CONSTRAINT `fk_badge_type_thematic_area` FOREIGN KEY
(`thematic_area_oid`) REFERENCES `thematic_area` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Temporary table structure for view `badgeimportancebyuser`

--

DROP TABLE IF EXISTS `badgeimportancebyuser`;

/*!50001 DROP VIEW IF EXISTS `badgeimportancebyuser`*/;

SET @saved_cs_client = @@character_set_client;

SET character_set_client = utf8;

/*!50001 CREATE TABLE `badgeimportancebyuser` (

 `badge_instance` tinyint NOT NULL,

 `user` tinyint NOT NULL,

 `nickname_area` tinyint NOT NULL,

 `importance` tinyint NOT NULL

SmartH2O – Databases of user information Page 71 D3.1 Version 3.1

) ENGINE=MyISAM */;

SET character_set_client = @saved_cs_client;

--

-- Temporary table structure for view `badgetype_sortco`

--

DROP TABLE IF EXISTS `badgetype_sortco`;

/*!50001 DROP VIEW IF EXISTS `badgetype_sortco`*/;

SET @saved_cs_client = @@character_set_client;

SET character_set_client = utf8;

/*!50001 CREATE TABLE `badgetype_sortco` (

 `oid` tinyint NOT NULL,

 `der_attr` tinyint NOT NULL

) ENGINE=MyISAM */;

SET character_set_client = @saved_cs_client;

--

-- Table structure for table `bundle_data`

--

DROP TABLE IF EXISTS `bundle_data`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `bundle_data` (

 `oid` int(11) NOT NULL,

 `key` varchar(255) DEFAULT NULL,

 `locale` varchar(255) DEFAULT NULL,

 `message` varchar(255) DEFAULT NULL,

 PRIMARY KEY (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `common_data`

--

DROP TABLE IF EXISTS `common_data`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `common_data` (

 `oid` int(11) NOT NULL,

 `name` varchar(255) DEFAULT NULL,

 `image` varchar(255) DEFAULT NULL,

 `area` varchar(255) DEFAULT NULL,

SmartH2O – Databases of user information Page 72 D3.1 Version 3.1

 `hd_image` varchar(255) DEFAULT NULL,

 PRIMARY KEY (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `community_user`

--

DROP TABLE IF EXISTS `community_user`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `community_user` (

 `oid` int(11) NOT NULL,

 `company_name` varchar(255) DEFAULT NULL,

 `first_name` varchar(255) DEFAULT NULL,

 `last_name` varchar(255) DEFAULT NULL,

 `city` varchar(255) DEFAULT NULL,

 `forum_level` int(11) DEFAULT NULL,

 `small_photo` varchar(255) DEFAULT NULL,

 `twitter` varchar(255) DEFAULT NULL,

 `country` varchar(255) DEFAULT NULL,

 `public_profile` tinyint(1) DEFAULT NULL,

 `geographical_area` varchar(255) DEFAULT NULL,

 `website` varchar(255) DEFAULT NULL,

 `big_photo` varchar(255) DEFAULT NULL,

 `bio` text,

 `linkedin` varchar(255) DEFAULT NULL,

 `certification_level` int(11) DEFAULT NULL,

 `kb_level` int(11) DEFAULT NULL,

 `store_level` int(11) DEFAULT NULL,

 `participation_monthly` decimal(19,2) DEFAULT NULL,

 `forum_badge` varchar(255) DEFAULT NULL,

 `certification_badge` varchar(255) DEFAULT NULL,

 `kb_badge` varchar(255) DEFAULT NULL,

 `store_badge` varchar(255) DEFAULT NULL,

 `kb_badge_title` varchar(255) DEFAULT NULL,

 `store_badge_title` varchar(255) DEFAULT NULL,

 `forum_badge_title` varchar(255) DEFAULT NULL,

 `certification_badge_title` varchar(255) DEFAULT NULL,

 `birthdate` date DEFAULT NULL,

 `participation` decimal(19,2) DEFAULT NULL,

 `credit` decimal(19,2) DEFAULT NULL,

 `facebook` varchar(255) DEFAULT NULL,

 `google` varchar(255) DEFAULT NULL,

SmartH2O – Databases of user information Page 73 D3.1 Version 3.1

 `iso_code` varchar(255) DEFAULT NULL,

 `small_photo_2` varchar(255) DEFAULT NULL,

 `small_photoblob` longblob,

 `big_photo_2` varchar(255) DEFAULT NULL,

 `big_photoblob` longblob,

 `registration_date` datetime DEFAULT NULL,

 `latitude` decimal(19,6) DEFAULT NULL,

 `longitude` decimal(19,6) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 CONSTRAINT `fk_rank_usertable` FOREIGN KEY (`oid`) REFERENCES
`user` (`user_id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Temporary table structure for view
`community_user_credits_availab`

--

DROP TABLE IF EXISTS `community_user_credits_availab`;

/*!50001 DROP VIEW IF EXISTS `community_user_credits_availab`*/;

SET @saved_cs_client = @@character_set_client;

SET character_set_client = utf8;

/*!50001 CREATE TABLE `community_user_credits_availab` (

 `oid` tinyint NOT NULL,

 `der_attr` tinyint NOT NULL

) ENGINE=MyISAM */;

SET character_set_client = @saved_cs_client;

--

-- Temporary table structure for view
`community_user_credits_spent_v`

--

DROP TABLE IF EXISTS `community_user_credits_spent_v`;

/*!50001 DROP VIEW IF EXISTS `community_user_credits_spent_v`*/;

SET @saved_cs_client = @@character_set_client;

SET character_set_client = utf8;

/*!50001 CREATE TABLE `community_user_credits_spent_v` (

 `oid` tinyint NOT NULL,

 `der_attr` tinyint NOT NULL

) ENGINE=MyISAM */;

SET character_set_client = @saved_cs_client;

--

SmartH2O – Databases of user information Page 74 D3.1 Version 3.1

-- Table structure for table `containers_mail`

--

DROP TABLE IF EXISTS `containers_mail`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `containers_mail` (

 `oid` int(11) NOT NULL,

 `language_code` varchar(255) DEFAULT NULL,

 `text` text,

 `alias` varchar(255) DEFAULT NULL,

 PRIMARY KEY (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `gamified_application`

--

DROP TABLE IF EXISTS `gamified_application`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `gamified_application` (

 `oid` int(11) NOT NULL,

 `name` varchar(255) DEFAULT NULL,

 `api_key` varchar(255) DEFAULT NULL,

 PRIMARY KEY (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `gamifiedapplication_thematic_a`

--

DROP TABLE IF EXISTS `gamifiedapplication_thematic_a`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `gamifiedapplication_thematic_a` (

 `gamified_application_oid` int(11) NOT NULL,

 `thematic_area_oid` int(11) NOT NULL,

 PRIMARY KEY (`gamified_application_oid`,`thematic_area_oid`),

 KEY `fk_gamifiedapplication_themati` (`gamified_application_oid`),

 KEY `fk_gamifiedapplication_thema_2` (`thematic_area_oid`),

 CONSTRAINT `fk_gamifiedapplication_thema_2` FOREIGN KEY
(`thematic_area_oid`) REFERENCES `thematic_area` (`oid`),

SmartH2O – Databases of user information Page 75 D3.1 Version 3.1

 CONSTRAINT `fk_gamifiedapplication_themati` FOREIGN KEY
(`gamified_application_oid`) REFERENCES `gamified_application`
(`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `geographical_area`

--

DROP TABLE IF EXISTS `geographical_area`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `geographical_area` (

 `oid` int(11) NOT NULL,

 `name` varchar(255) DEFAULT NULL,

 PRIMARY KEY (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `goal`

--

DROP TABLE IF EXISTS `goal`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `goal` (

 `oid` int(11) NOT NULL,

 `title` varchar(255) DEFAULT NULL,

 `completion_date` date DEFAULT NULL,

 `community_user_user_id` int(11) DEFAULT NULL,

 `badge_type_oid` int(11) DEFAULT NULL,

 `active` bit(1) DEFAULT NULL,

 `consumption` decimal(19,2) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `fk_goal_community_user` (`community_user_user_id`),

 KEY `fk_goal_badge_type` (`badge_type_oid`),

 CONSTRAINT `fk_goal_badge_type` FOREIGN KEY (`badge_type_oid`)
REFERENCES `badge_type` (`oid`),

 CONSTRAINT `fk_goal_community_user` FOREIGN KEY
(`community_user_user_id`) REFERENCES `community_user` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

SmartH2O – Databases of user information Page 76 D3.1 Version 3.1

-- Table structure for table `goal_action_type`

--

DROP TABLE IF EXISTS `goal_action_type`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `goal_action_type` (

 `goal_oid` int(11) NOT NULL,

 `action_type_oid` int(11) NOT NULL,

 PRIMARY KEY (`goal_oid`,`action_type_oid`),

 KEY `fk_goal_action_type_goal` (`goal_oid`),

 KEY `fk_goal_action_type_action_typ` (`action_type_oid`),

 CONSTRAINT `fk_goal_action_type_action_typ` FOREIGN KEY
(`action_type_oid`) REFERENCES `action_type` (`oid`),

 CONSTRAINT `fk_goal_action_type_goal` FOREIGN KEY (`goal_oid`)
REFERENCES `goal` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `group_moduletable`

--

DROP TABLE IF EXISTS `group_moduletable`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `group_moduletable` (

 `groupoid` int(11) NOT NULL,

 `moduleoid` int(11) NOT NULL,

 PRIMARY KEY (`groupoid`,`moduleoid`),

 KEY `idx_group_moduletable_grouptab` (`groupoid`),

 KEY `idx_group_moduletable_siteview` (`moduleoid`),

 CONSTRAINT `fk_group_moduletable_grouptabl` FOREIGN KEY
(`groupoid`) REFERENCES `grouptable` (`oid_2`),

 CONSTRAINT `fk_group_moduletable_siteviewt` FOREIGN KEY
(`moduleoid`) REFERENCES `siteviewtable` (`oid_2`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `grouptable`

--

DROP TABLE IF EXISTS `grouptable`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

SmartH2O – Databases of user information Page 77 D3.1 Version 3.1

CREATE TABLE `grouptable` (

 `oid_2` int(11) NOT NULL,

 `groupname` varchar(255) DEFAULT NULL,

 `siteviewoid` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid_2`),

 KEY `idx_grouptable_siteviewtable` (`siteviewoid`),

 CONSTRAINT `fk_grouptable_siteviewtable` FOREIGN KEY
(`siteviewoid`) REFERENCES `siteviewtable` (`oid_2`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Temporary table structure for view
`headquarter_user_partecipation`

--

DROP TABLE IF EXISTS `headquarter_user_partecipation`;

/*!50001 DROP VIEW IF EXISTS `headquarter_user_partecipation`*/;

SET @saved_cs_client = @@character_set_client;

SET character_set_client = utf8;

/*!50001 CREATE TABLE `headquarter_user_partecipation` (

 `oid` tinyint NOT NULL,

 `partecipation` tinyint NOT NULL

) ENGINE=MyISAM */;

SET character_set_client = @saved_cs_client;

--

-- Temporary table structure for view
`headquarter_user_participation_monthly`

--

DROP TABLE IF EXISTS `headquarter_user_participation_monthly`;

/*!50001 DROP VIEW IF EXISTS
`headquarter_user_participation_monthly`*/;

SET @saved_cs_client = @@character_set_client;

SET character_set_client = utf8;

/*!50001 CREATE TABLE `headquarter_user_participation_monthly` (

 `oid` tinyint NOT NULL,

 `participation_monthly` tinyint NOT NULL

) ENGINE=MyISAM */;

SET character_set_client = @saved_cs_client;

--

-- Temporary table structure for view
`headquarter_user_participation_seven_days`

--

SmartH2O – Databases of user information Page 78 D3.1 Version 3.1

DROP TABLE IF EXISTS `headquarter_user_participation_seven_days`;

/*!50001 DROP VIEW IF EXISTS
`headquarter_user_participation_seven_days`*/;

SET @saved_cs_client = @@character_set_client;

SET character_set_client = utf8;

/*!50001 CREATE TABLE `headquarter_user_participation_seven_days` (

 `oid` tinyint NOT NULL,

 `participation_seven_days` tinyint NOT NULL

) ENGINE=MyISAM */;

SET character_set_client = @saved_cs_client;

--

-- Table structure for table `job_blob_triggers`

--

DROP TABLE IF EXISTS `job_blob_triggers`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `job_blob_triggers` (

 `SCHED_NAME` varchar(120) NOT NULL,

 `TRIGGER_NAME` varchar(200) NOT NULL,

 `TRIGGER_GROUP` varchar(200) NOT NULL,

 `BLOB_DATA` blob,

 PRIMARY KEY (`SCHED_NAME`,`TRIGGER_NAME`,`TRIGGER_GROUP`),

 KEY `SCHED_NAME` (`SCHED_NAME`,`TRIGGER_NAME`,`TRIGGER_GROUP`),

 CONSTRAINT `JOB_BLOB_TRIGGERS_ibfk_1` FOREIGN KEY (`SCHED_NAME`,
`TRIGGER_NAME`, `TRIGGER_GROUP`) REFERENCES `job_triggers`
(`SCHED_NAME`, `TRIGGER_NAME`, `TRIGGER_GROUP`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `job_calendars`

--

DROP TABLE IF EXISTS `job_calendars`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `job_calendars` (

 `SCHED_NAME` varchar(120) NOT NULL,

 `CALENDAR_NAME` varchar(200) NOT NULL,

 `CALENDAR` blob NOT NULL,

 PRIMARY KEY (`SCHED_NAME`,`CALENDAR_NAME`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

SmartH2O – Databases of user information Page 79 D3.1 Version 3.1

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `job_cron_triggers`

--

DROP TABLE IF EXISTS `job_cron_triggers`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `job_cron_triggers` (

 `SCHED_NAME` varchar(120) NOT NULL,

 `TRIGGER_NAME` varchar(200) NOT NULL,

 `TRIGGER_GROUP` varchar(200) NOT NULL,

 `CRON_EXPRESSION` varchar(120) NOT NULL,

 `TIME_ZONE_ID` varchar(80) DEFAULT NULL,

 PRIMARY KEY (`SCHED_NAME`,`TRIGGER_NAME`,`TRIGGER_GROUP`),

 KEY `SCHED_NAME` (`SCHED_NAME`,`TRIGGER_NAME`,`TRIGGER_GROUP`),

 CONSTRAINT `JOB_CRON_TRIGGERS_ibfk_1` FOREIGN KEY (`SCHED_NAME`,
`TRIGGER_NAME`, `TRIGGER_GROUP`) REFERENCES `job_triggers`
(`SCHED_NAME`, `TRIGGER_NAME`, `TRIGGER_GROUP`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `job_fired_triggers`

--

DROP TABLE IF EXISTS `job_fired_triggers`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `job_fired_triggers` (

 `SCHED_NAME` varchar(120) NOT NULL,

 `ENTRY_ID` varchar(95) NOT NULL,

 `TRIGGER_NAME` varchar(200) NOT NULL,

 `TRIGGER_GROUP` varchar(200) NOT NULL,

 `INSTANCE_NAME` varchar(200) NOT NULL,

 `FIRED_TIME` bigint(13) NOT NULL,

 `PRIORITY` int(11) NOT NULL,

 `STATE` varchar(16) NOT NULL,

 `JOB_NAME` varchar(200) DEFAULT NULL,

 `JOB_GROUP` varchar(200) DEFAULT NULL,

 `IS_NONCONCURRENT` varchar(1) DEFAULT NULL,

 `REQUESTS_RECOVERY` varchar(1) DEFAULT NULL,

 PRIMARY KEY (`SCHED_NAME`,`ENTRY_ID`),

 KEY `IDX_JOB_FT_TRIG_INST_NAME` (`SCHED_NAME`,`INSTANCE_NAME`),

SmartH2O – Databases of user information Page 80 D3.1 Version 3.1

 KEY `IDX_JOB_FT_INST_JOB_REQ_RCVRY`
(`SCHED_NAME`,`INSTANCE_NAME`,`REQUESTS_RECOVERY`),

 KEY `IDX_JOB_FT_J_G` (`SCHED_NAME`,`JOB_NAME`,`JOB_GROUP`),

 KEY `IDX_JOB_FT_JG` (`SCHED_NAME`,`JOB_GROUP`),

 KEY `IDX_JOB_FT_T_G`
(`SCHED_NAME`,`TRIGGER_NAME`,`TRIGGER_GROUP`),

 KEY `IDX_JOB_FT_TG` (`SCHED_NAME`,`TRIGGER_GROUP`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `job_job_details`

--

DROP TABLE IF EXISTS `job_job_details`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `job_job_details` (

 `SCHED_NAME` varchar(120) NOT NULL,

 `JOB_NAME` varchar(200) NOT NULL,

 `JOB_GROUP` varchar(200) NOT NULL,

 `DESCRIPTION` varchar(250) DEFAULT NULL,

 `JOB_CLASS_NAME` varchar(250) NOT NULL,

 `IS_DURABLE` varchar(1) NOT NULL,

 `IS_NONCONCURRENT` varchar(1) NOT NULL,

 `IS_UPDATE_DATA` varchar(1) NOT NULL,

 `REQUESTS_RECOVERY` varchar(1) NOT NULL,

 `JOB_DATA` blob,

 PRIMARY KEY (`SCHED_NAME`,`JOB_NAME`,`JOB_GROUP`),

 KEY `IDX_JOB_J_REQ_RECOVERY` (`SCHED_NAME`,`REQUESTS_RECOVERY`),

 KEY `IDX_JOB_J_GRP` (`SCHED_NAME`,`JOB_GROUP`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `job_locks`

--

DROP TABLE IF EXISTS `job_locks`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `job_locks` (

 `SCHED_NAME` varchar(120) NOT NULL,

 `LOCK_NAME` varchar(40) NOT NULL,

 PRIMARY KEY (`SCHED_NAME`,`LOCK_NAME`)

SmartH2O – Databases of user information Page 81 D3.1 Version 3.1

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `job_paused_trigger_grps`

--

DROP TABLE IF EXISTS `job_paused_trigger_grps`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `job_paused_trigger_grps` (

 `SCHED_NAME` varchar(120) NOT NULL,

 `TRIGGER_GROUP` varchar(200) NOT NULL,

 PRIMARY KEY (`SCHED_NAME`,`TRIGGER_GROUP`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `job_scheduler_state`

--

DROP TABLE IF EXISTS `job_scheduler_state`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `job_scheduler_state` (

 `SCHED_NAME` varchar(120) NOT NULL,

 `INSTANCE_NAME` varchar(200) NOT NULL,

 `LAST_CHECKIN_TIME` bigint(13) NOT NULL,

 `CHECKIN_INTERVAL` bigint(13) NOT NULL,

 PRIMARY KEY (`SCHED_NAME`,`INSTANCE_NAME`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `job_simple_triggers`

--

DROP TABLE IF EXISTS `job_simple_triggers`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `job_simple_triggers` (

 `SCHED_NAME` varchar(120) NOT NULL,

 `TRIGGER_NAME` varchar(200) NOT NULL,

 `TRIGGER_GROUP` varchar(200) NOT NULL,

 `REPEAT_COUNT` bigint(7) NOT NULL,

SmartH2O – Databases of user information Page 82 D3.1 Version 3.1

 `REPEAT_INTERVAL` bigint(12) NOT NULL,

 `TIMES_TRIGGERED` bigint(10) NOT NULL,

 PRIMARY KEY (`SCHED_NAME`,`TRIGGER_NAME`,`TRIGGER_GROUP`),

 KEY `SCHED_NAME` (`SCHED_NAME`,`TRIGGER_NAME`,`TRIGGER_GROUP`),

 CONSTRAINT `JOB_SIMPLE_TRIGGERS_ibfk_1` FOREIGN KEY (`SCHED_NAME`,
`TRIGGER_NAME`, `TRIGGER_GROUP`) REFERENCES `job_triggers`
(`SCHED_NAME`, `TRIGGER_NAME`, `TRIGGER_GROUP`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `job_simprop_triggers`

--

DROP TABLE IF EXISTS `job_simprop_triggers`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `job_simprop_triggers` (

 `SCHED_NAME` varchar(120) NOT NULL,

 `TRIGGER_NAME` varchar(200) NOT NULL,

 `TRIGGER_GROUP` varchar(200) NOT NULL,

 `STR_PROP_1` varchar(512) DEFAULT NULL,

 `STR_PROP_2` varchar(512) DEFAULT NULL,

 `STR_PROP_3` varchar(512) DEFAULT NULL,

 `INT_PROP_1` int(11) DEFAULT NULL,

 `INT_PROP_2` int(11) DEFAULT NULL,

 `LONG_PROP_1` bigint(20) DEFAULT NULL,

 `LONG_PROP_2` bigint(20) DEFAULT NULL,

 `DEC_PROP_1` decimal(13,4) DEFAULT NULL,

 `DEC_PROP_2` decimal(13,4) DEFAULT NULL,

 `BOOL_PROP_1` varchar(1) DEFAULT NULL,

 `BOOL_PROP_2` varchar(1) DEFAULT NULL,

 PRIMARY KEY (`SCHED_NAME`,`TRIGGER_NAME`,`TRIGGER_GROUP`),

 CONSTRAINT `JOB_SIMPROP_TRIGGERS_ibfk_1` FOREIGN KEY
(`SCHED_NAME`, `TRIGGER_NAME`, `TRIGGER_GROUP`) REFERENCES
`job_triggers` (`SCHED_NAME`, `TRIGGER_NAME`, `TRIGGER_GROUP`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `job_triggers`

--

DROP TABLE IF EXISTS `job_triggers`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

SmartH2O – Databases of user information Page 83 D3.1 Version 3.1

CREATE TABLE `job_triggers` (

 `SCHED_NAME` varchar(120) NOT NULL,

 `TRIGGER_NAME` varchar(200) NOT NULL,

 `TRIGGER_GROUP` varchar(200) NOT NULL,

 `JOB_NAME` varchar(200) NOT NULL,

 `JOB_GROUP` varchar(200) NOT NULL,

 `DESCRIPTION` varchar(250) DEFAULT NULL,

 `NEXT_FIRE_TIME` bigint(13) DEFAULT NULL,

 `PREV_FIRE_TIME` bigint(13) DEFAULT NULL,

 `PRIORITY` int(11) DEFAULT NULL,

 `TRIGGER_STATE` varchar(16) NOT NULL,

 `TRIGGER_TYPE` varchar(8) NOT NULL,

 `START_TIME` bigint(13) NOT NULL,

 `END_TIME` bigint(13) DEFAULT NULL,

 `CALENDAR_NAME` varchar(200) DEFAULT NULL,

 `MISFIRE_INSTR` smallint(2) DEFAULT NULL,

 `JOB_DATA` blob,

 PRIMARY KEY (`SCHED_NAME`,`TRIGGER_NAME`,`TRIGGER_GROUP`),

 KEY `SCHED_NAME` (`SCHED_NAME`,`JOB_NAME`,`JOB_GROUP`),

 KEY `IDX_JOB_T_J` (`SCHED_NAME`,`JOB_NAME`,`JOB_GROUP`),

 KEY `IDX_JOB_T_JG` (`SCHED_NAME`,`JOB_GROUP`),

 KEY `IDX_JOB_T_C` (`SCHED_NAME`,`CALENDAR_NAME`),

 KEY `IDX_JOB_T_G` (`SCHED_NAME`,`TRIGGER_GROUP`),

 KEY `IDX_JOB_T_STATE` (`SCHED_NAME`,`TRIGGER_STATE`),

 KEY `IDX_JOB_T_N_STATE`
(`SCHED_NAME`,`TRIGGER_NAME`,`TRIGGER_GROUP`,`TRIGGER_STATE`),

 KEY `IDX_JOB_T_N_G_STATE`
(`SCHED_NAME`,`TRIGGER_GROUP`,`TRIGGER_STATE`),

 KEY `IDX_JOB_T_NEXT_FIRE_TIME` (`SCHED_NAME`,`NEXT_FIRE_TIME`),

 KEY `IDX_JOB_T_NFT_ST`
(`SCHED_NAME`,`TRIGGER_STATE`,`NEXT_FIRE_TIME`),

 KEY `IDX_JOB_T_NFT_MISFIRE`
(`SCHED_NAME`,`MISFIRE_INSTR`,`NEXT_FIRE_TIME`),

 KEY `IDX_JOB_T_NFT_ST_MISFIRE`
(`SCHED_NAME`,`MISFIRE_INSTR`,`NEXT_FIRE_TIME`,`TRIGGER_STATE`),

 KEY `IDX_JOB_T_NFT_ST_MISFIRE_GRP`
(`SCHED_NAME`,`MISFIRE_INSTR`,`NEXT_FIRE_TIME`,`TRIGGER_GROUP`,`TRIG
GER_STATE`),

 CONSTRAINT `JOB_TRIGGERS_ibfk_1` FOREIGN KEY (`SCHED_NAME`,
`JOB_NAME`, `JOB_GROUP`) REFERENCES `job_job_details` (`SCHED_NAME`,
`JOB_NAME`, `JOB_GROUP`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Temporary table structure for view `max_date_action_instance`

--

SmartH2O – Databases of user information Page 84 D3.1 Version 3.1

DROP TABLE IF EXISTS `max_date_action_instance`;

/*!50001 DROP VIEW IF EXISTS `max_date_action_instance`*/;

SET @saved_cs_client = @@character_set_client;

SET character_set_client = utf8;

/*!50001 CREATE TABLE `max_date_action_instance` (

 `action_type_oid` tinyint NOT NULL,

 `rank_oid` tinyint NOT NULL,

 `maxDate` tinyint NOT NULL

) ENGINE=MyISAM */;

SET character_set_client = @saved_cs_client;

--

-- Temporary table structure for view `mostimportant_badge`

--

DROP TABLE IF EXISTS `mostimportant_badge`;

/*!50001 DROP VIEW IF EXISTS `mostimportant_badge`*/;

SET @saved_cs_client = @@character_set_client;

SET character_set_client = utf8;

/*!50001 CREATE TABLE `mostimportant_badge` (

 `oid` tinyint NOT NULL,

 `rankoid` tinyint NOT NULL,

 `area` tinyint NOT NULL,

 `title` tinyint NOT NULL,

 `importance` tinyint NOT NULL,

 `checked_image_2` tinyint NOT NULL,

 `checked_imageblob` tinyint NOT NULL,

 `hd_checked_image_2` tinyint NOT NULL,

 `hd_checked_imageblob` tinyint NOT NULL,

 `sort_number` tinyint NOT NULL

) ENGINE=MyISAM */;

SET character_set_client = @saved_cs_client;

--

-- Table structure for table `notification`

--

DROP TABLE IF EXISTS `notification`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `notification` (

 `oid` int(11) NOT NULL,

 `creation_date` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON
UPDATE CURRENT_TIMESTAMP,

SmartH2O – Databases of user information Page 85 D3.1 Version 3.1

 `code` varchar(255) DEFAULT NULL,

 `status` varchar(255) DEFAULT NULL,

 `delivery_date` timestamp NULL DEFAULT NULL,

 `language_code` varchar(255) DEFAULT NULL,

 `rank_oid` int(11) DEFAULT NULL,

 `reward_type_oid` int(11) DEFAULT NULL,

 `text_mail_oid` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `idx_notification_rank` (`rank_oid`),

 KEY `idx_notification_reward_type` (`reward_type_oid`),

 KEY `idx_notification_text_mail` (`text_mail_oid`),

 CONSTRAINT `fk_notification_rank` FOREIGN KEY (`rank_oid`)
REFERENCES `community_user` (`oid`),

 CONSTRAINT `fk_notification_reward_type` FOREIGN KEY
(`reward_type_oid`) REFERENCES `reward_type` (`oid`),

 CONSTRAINT `fk_notification_text_mail` FOREIGN KEY
(`text_mail_oid`) REFERENCES `text_mail` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `reward_instance`

--

DROP TABLE IF EXISTS `reward_instance`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `reward_instance` (

 `oid` int(11) NOT NULL,

 `date` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE
CURRENT_TIMESTAMP,

 `score` decimal(19,2) DEFAULT NULL,

 `rank_oid` int(11) DEFAULT NULL,

 `reward_type_oid` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `idx_reward_instance_rank` (`rank_oid`),

 KEY `idx_reward_instance_reward_typ` (`reward_type_oid`),

 CONSTRAINT `fk_reward_instance_rank` FOREIGN KEY (`rank_oid`)
REFERENCES `community_user` (`oid`),

 CONSTRAINT `fk_reward_instance_reward_type` FOREIGN KEY
(`reward_type_oid`) REFERENCES `reward_type` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `reward_type`

SmartH2O – Databases of user information Page 86 D3.1 Version 3.1

--

DROP TABLE IF EXISTS `reward_type`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `reward_type` (

 `oid` int(11) NOT NULL,

 `needed_points` decimal(19,2) DEFAULT NULL,

 `available` tinyint(1) DEFAULT NULL,

 `image` varchar(255) DEFAULT NULL,

 `language_code` varchar(255) DEFAULT NULL,

 `title` varchar(255) DEFAULT NULL,

 `description` text,

 `image_2` varchar(255) DEFAULT NULL,

 `imageblob` longblob,

 PRIMARY KEY (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `siteviewtable`

--

DROP TABLE IF EXISTS `siteviewtable`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `siteviewtable` (

 `oid_2` int(11) NOT NULL,

 `moduledomainname` varchar(255) DEFAULT NULL,

 `siteviewid` varchar(255) DEFAULT NULL,

 `modulename` varchar(255) DEFAULT NULL,

 PRIMARY KEY (`oid_2`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `text_chunk`

--

DROP TABLE IF EXISTS `text_chunk`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `text_chunk` (

 `oid` int(11) NOT NULL,

 `languagecode` varchar(255) DEFAULT NULL,

SmartH2O – Databases of user information Page 87 D3.1 Version 3.1

 `key` varchar(255) DEFAULT NULL,

 `message` text,

 PRIMARY KEY (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `text_mail`

--

DROP TABLE IF EXISTS `text_mail`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `text_mail` (

 `oid` int(11) NOT NULL,

 `code` varchar(255) DEFAULT NULL,

 `language_code` varchar(255) DEFAULT NULL,

 `body` text,

 `description` varchar(255) DEFAULT NULL,

 `subject` varchar(255) DEFAULT NULL,

 `containers_oid_header` int(11) DEFAULT NULL,

 `containers_oid_footer` int(11) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `idx_text_mail_containers_mail` (`containers_oid_header`),

 KEY `idx_text_mail_containers_mai_2` (`containers_oid_footer`),

 CONSTRAINT `fk_text_mail_containers_mail` FOREIGN KEY
(`containers_oid_header`) REFERENCES `containers_mail` (`oid`),

 CONSTRAINT `fk_text_mail_containers_mail_2` FOREIGN KEY
(`containers_oid_footer`) REFERENCES `containers_mail` (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `thematic_area`

--

DROP TABLE IF EXISTS `thematic_area`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `thematic_area` (

 `oid` int(11) NOT NULL,

 `area_name` varchar(255) DEFAULT NULL,

 `checked_image` varchar(255) DEFAULT NULL,

 `hd_image` varchar(255) DEFAULT NULL,

 `hd_checked_image` varchar(255) DEFAULT NULL,

SmartH2O – Databases of user information Page 88 D3.1 Version 3.1

 `checked_imageblob` blob,

 `hd_checked_imageblob` blob,

 `hd_imageblob` blob,

 PRIMARY KEY (`oid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `user`

--

DROP TABLE IF EXISTS `user`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `user` (

 `user_id` int(11) NOT NULL,

 `email` varchar(255) DEFAULT NULL,

 `password` varchar(255) DEFAULT NULL,

 `internal` tinyint(1) DEFAULT NULL,

 `username` varchar(255) DEFAULT NULL,

 `groupoid` int(11) DEFAULT NULL,

 PRIMARY KEY (`user_id`),

 KEY `idx_usertable_grouptable` (`groupoid`),

 CONSTRAINT `fk_usertable_grouptable` FOREIGN KEY (`groupoid`)
REFERENCES `grouptable` (`oid_2`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `user_grouptable`

--

DROP TABLE IF EXISTS `user_grouptable`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `user_grouptable` (

 `useroid` int(11) NOT NULL,

 `groupoid` int(11) NOT NULL,

 PRIMARY KEY (`useroid`,`groupoid`),

 KEY `idx_user_grouptable_usertable` (`useroid`),

 KEY `idx_user_grouptable_grouptable` (`groupoid`),

 CONSTRAINT `fk_user_grouptable_grouptable` FOREIGN KEY
(`groupoid`) REFERENCES `grouptable` (`oid_2`),

 CONSTRAINT `fk_user_grouptable_usertable` FOREIGN KEY (`useroid`)
REFERENCES `user` (`user_id`)

SmartH2O – Databases of user information Page 89 D3.1 Version 3.1

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Temporary table structure for view `user_information`

--

DROP TABLE IF EXISTS `user_information`;

/*!50001 DROP VIEW IF EXISTS `user_information`*/;

SET @saved_cs_client = @@character_set_client;

SET character_set_client = utf8;

/*!50001 CREATE TABLE `user_information` (

 `oid` tinyint NOT NULL,

 `country` tinyint NOT NULL,

 `area_geografica` tinyint NOT NULL,

 `small_photo` tinyint NOT NULL,

 `big_photo` tinyint NOT NULL,

 `first_name` tinyint NOT NULL,

 `last_name` tinyint NOT NULL,

 `twitter` tinyint NOT NULL,

 `linkedin` tinyint NOT NULL,

 `website` tinyint NOT NULL,

 `bio` tinyint NOT NULL,

 `city` tinyint NOT NULL,

 `company_name` tinyint NOT NULL,

 `email` tinyint NOT NULL,

 `internal` tinyint NOT NULL

) ENGINE=MyISAM */;

SET character_set_client = @saved_cs_client;

--

-- Final view structure for view `action_instance_action_area_vi`

--

/*!50001 DROP TABLE IF EXISTS `action_instance_action_area_vi`*/;

/*!50001 DROP VIEW IF EXISTS `action_instance_action_area_vi`*/;

/*!50001 SET @saved_cs_client = @@character_set_client */;

/*!50001 SET @saved_cs_results = @@character_set_results */;

/*!50001 SET @saved_col_connection = @@collation_connection */;

/*!50001 SET character_set_client = utf8 */;

/*!50001 SET character_set_results = utf8 */;

/*!50001 SET collation_connection = utf8_general_ci */;

/*!50001 CREATE ALGORITHM=UNDEFINED */

/*!50013 DEFINER=`root`@`localhost` SQL SECURITY DEFINER */

/*!50001 VIEW `action_instance_action_area_vi` AS select `al1`.`oid`

SmartH2O – Databases of user information Page 90 D3.1 Version 3.1

AS `oid`,`al2`.`area` AS `der_attr` from (`action_instance` `al1`
left join `action_type` `al2` on((`al1`.`action_type_oid` =
`al2`.`oid`))) */;

/*!50001 SET character_set_client = @saved_cs_client */;

/*!50001 SET character_set_results = @saved_cs_results */;

/*!50001 SET collation_connection = @saved_col_connection */;

--

-- Final view structure for view `action_instance_daily_vi`

--

/*!50001 DROP TABLE IF EXISTS `action_instance_daily_vi`*/;

/*!50001 DROP VIEW IF EXISTS `action_instance_daily_vi`*/;

/*!50001 SET @saved_cs_client = @@character_set_client */;

/*!50001 SET @saved_cs_results = @@character_set_results */;

/*!50001 SET @saved_col_connection = @@collation_connection */;

/*!50001 SET character_set_client = utf8 */;

/*!50001 SET character_set_results = utf8 */;

/*!50001 SET collation_connection = utf8_general_ci */;

/*!50001 CREATE ALGORITHM=UNDEFINED */

/*!50013 DEFINER=`root`@`localhost` SQL SECURITY DEFINER */

/*!50001 VIEW `action_instance_daily_vi` AS select
`action_instance`.`action_type_oid` AS
`action_type_oid`,cast(`action_instance`.`date` as date) AS
`date`,count(0) AS `daily_occurrence` from `action_instance` group
by `action_instance`.`action_type_oid`,cast(`action_instance`.`date`
as date) order by
`action_instance`.`action_type_oid`,cast(`action_instance`.`date` as
date) */;

/*!50001 SET character_set_client = @saved_cs_client */;

/*!50001 SET character_set_results = @saved_cs_results */;

/*!50001 SET collation_connection = @saved_col_connection */;

--

-- Final view structure for view `action_instance_name_view`

--

/*!50001 DROP TABLE IF EXISTS `action_instance_name_view`*/;

/*!50001 DROP VIEW IF EXISTS `action_instance_name_view`*/;

/*!50001 SET @saved_cs_client = @@character_set_client */;

/*!50001 SET @saved_cs_results = @@character_set_results */;

/*!50001 SET @saved_col_connection = @@collation_connection */;

/*!50001 SET character_set_client = utf8 */;

/*!50001 SET character_set_results = utf8 */;

/*!50001 SET collation_connection = utf8_general_ci */;

/*!50001 CREATE ALGORITHM=UNDEFINED */

/*!50013 DEFINER=`root`@`localhost` SQL SECURITY DEFINER */

SmartH2O – Databases of user information Page 91 D3.1 Version 3.1

/*!50001 VIEW `action_instance_name_view` AS select `al1`.`oid` AS
`oid`,`al2`.`name` AS `der_attr` from (`action_instance` `al1` left
join `action_type` `al2` on((`al1`.`action_type_oid` =
`al2`.`oid`))) */;

/*!50001 SET character_set_client = @saved_cs_client */;

/*!50001 SET character_set_results = @saved_cs_results */;

/*!50001 SET collation_connection = @saved_col_connection */;

--

-- Final view structure for view `badgeimportancebyuser`

--

/*!50001 DROP TABLE IF EXISTS `badgeimportancebyuser`*/;

/*!50001 DROP VIEW IF EXISTS `badgeimportancebyuser`*/;

/*!50001 SET @saved_cs_client = @@character_set_client */;

/*!50001 SET @saved_cs_results = @@character_set_results */;

/*!50001 SET @saved_col_connection = @@collation_connection */;

/*!50001 SET character_set_client = utf8 */;

/*!50001 SET character_set_results = utf8 */;

/*!50001 SET collation_connection = utf8_general_ci */;

/*!50001 CREATE ALGORITHM=UNDEFINED */

/*!50013 DEFINER=`root`@`localhost` SQL SECURITY DEFINER */

/*!50001 VIEW `badgeimportancebyuser` AS select `m`.`oid` AS
`badge_instance`,`q`.`oid` AS `user`,`c`.`area` AS
`nickname_area`,max(`c`.`importance`) AS `importance` from
((`badge_type` `c` join `badge_instance` `m`) join `community_user`
`q`) where ((`m`.`badge_type_oid` = `c`.`oid`) and (`q`.`oid` =
`m`.`rank_oid`)) group by `q`.`oid`,`c`.`area` */;

/*!50001 SET character_set_client = @saved_cs_client */;

/*!50001 SET character_set_results = @saved_cs_results */;

/*!50001 SET collation_connection = @saved_col_connection */;

--

-- Final view structure for view `badgetype_sortco`

--

/*!50001 DROP TABLE IF EXISTS `badgetype_sortco`*/;

/*!50001 DROP VIEW IF EXISTS `badgetype_sortco`*/;

/*!50001 SET @saved_cs_client = @@character_set_client */;

/*!50001 SET @saved_cs_results = @@character_set_results */;

/*!50001 SET @saved_col_connection = @@collation_connection */;

/*!50001 SET character_set_client = utf8 */;

/*!50001 SET character_set_results = utf8 */;

/*!50001 SET collation_connection = utf8_general_ci */;

/*!50001 CREATE ALGORITHM=UNDEFINED */

/*!50013 DEFINER=`root`@`localhost` SQL SECURITY DEFINER */

/*!50001 VIEW `badgetype_sortco` AS select `al1`.`oid` AS

SmartH2O – Databases of user information Page 92 D3.1 Version 3.1

`oid`,(`al2`.`sort_number` or `al3`.`sort_number`) AS `der_attr`
from ((`badge_type` `al1` join `badge_type` `al2`) join `badge_type`
`al3`) where ((`al2`.`key` = 'area') and (`al1`.`area` =
`al2`.`area`) and (`al3`.`key` = 'level') and (`al1`.`importance` =
`al3`.`sort_number`)) */;

/*!50001 SET character_set_client = @saved_cs_client */;

/*!50001 SET character_set_results = @saved_cs_results */;

/*!50001 SET collation_connection = @saved_col_connection */;

--

-- Final view structure for view `community_user_credits_availab`

--

/*!50001 DROP TABLE IF EXISTS `community_user_credits_availab`*/;

/*!50001 DROP VIEW IF EXISTS `community_user_credits_availab`*/;

/*!50001 SET @saved_cs_client = @@character_set_client */;

/*!50001 SET @saved_cs_results = @@character_set_results */;

/*!50001 SET @saved_col_connection = @@collation_connection */;

/*!50001 SET character_set_client = utf8 */;

/*!50001 SET character_set_results = utf8 */;

/*!50001 SET collation_connection = utf8_general_ci */;

/*!50001 CREATE ALGORITHM=UNDEFINED */

/*!50013 DEFINER=`root`@`localhost` SQL SECURITY DEFINER */

/*!50001 VIEW `community_user_credits_availab` AS select `al1`.`oid`
AS `oid`,(case when isnull((`al1`.`credit` - `al2`.`der_attr`)) then
0 else (`al1`.`credit` - `al2`.`der_attr`) end) AS `der_attr` from
(`community_user` `al1` left join `community_user_credits_spent_v`
`al2` on((`al1`.`oid` = `al2`.`oid`))) */;

/*!50001 SET character_set_client = @saved_cs_client */;

/*!50001 SET character_set_results = @saved_cs_results */;

/*!50001 SET collation_connection = @saved_col_connection */;

--

-- Final view structure for view `community_user_credits_spent_v`

--

/*!50001 DROP TABLE IF EXISTS `community_user_credits_spent_v`*/;

/*!50001 DROP VIEW IF EXISTS `community_user_credits_spent_v`*/;

/*!50001 SET @saved_cs_client = @@character_set_client */;

/*!50001 SET @saved_cs_results = @@character_set_results */;

/*!50001 SET @saved_col_connection = @@collation_connection */;

/*!50001 SET character_set_client = utf8 */;

/*!50001 SET character_set_results = utf8 */;

/*!50001 SET collation_connection = utf8_general_ci */;

/*!50001 CREATE ALGORITHM=UNDEFINED */

/*!50013 DEFINER=`root`@`localhost` SQL SECURITY DEFINER */

/*!50001 VIEW `community_user_credits_spent_v` AS select `al1`.`oid`

SmartH2O – Databases of user information Page 93 D3.1 Version 3.1

AS `oid`,(case when isnull(sum(`al2`.`score`)) then 0 else
sum(`al2`.`score`) end) AS `der_attr` from (`community_user` `al1`
left join `reward_instance` `al2` on((`al1`.`oid` =
`al2`.`rank_oid`))) group by `al1`.`oid` */;

/*!50001 SET character_set_client = @saved_cs_client */;

/*!50001 SET character_set_results = @saved_cs_results */;

/*!50001 SET collation_connection = @saved_col_connection */;

--

-- Final view structure for view `headquarter_user_partecipation`

--

/*!50001 DROP TABLE IF EXISTS `headquarter_user_partecipation`*/;

/*!50001 DROP VIEW IF EXISTS `headquarter_user_partecipation`*/;

/*!50001 SET @saved_cs_client = @@character_set_client */;

/*!50001 SET @saved_cs_results = @@character_set_results */;

/*!50001 SET @saved_col_connection = @@collation_connection */;

/*!50001 SET character_set_client = utf8 */;

/*!50001 SET character_set_results = utf8 */;

/*!50001 SET collation_connection = utf8_general_ci */;

/*!50001 CREATE ALGORITHM=UNDEFINED */

/*!50013 DEFINER=`root`@`localhost` SQL SECURITY DEFINER */

/*!50001 VIEW `headquarter_user_partecipation` AS select `al1`.`oid`
AS `oid`,sum(`al2`.`score`) AS `partecipation` from
((`community_user` `al1` join `action_instance` `al2`) join
`action_type` `al3`) where ((`al3`.`participation` = 1) and
(`al1`.`oid` = `al2`.`rank_oid`) and (`al2`.`action_type_oid` =
`al3`.`oid`)) group by `al1`.`oid` */;

/*!50001 SET character_set_client = @saved_cs_client */;

/*!50001 SET character_set_results = @saved_cs_results */;

/*!50001 SET collation_connection = @saved_col_connection */;

--

-- Final view structure for view
`headquarter_user_participation_monthly`

--

/*!50001 DROP TABLE IF EXISTS
`headquarter_user_participation_monthly`*/;

/*!50001 DROP VIEW IF EXISTS
`headquarter_user_participation_monthly`*/;

/*!50001 SET @saved_cs_client = @@character_set_client */;

/*!50001 SET @saved_cs_results = @@character_set_results */;

/*!50001 SET @saved_col_connection = @@collation_connection */;

/*!50001 SET character_set_client = utf8 */;

/*!50001 SET character_set_results = utf8 */;

/*!50001 SET collation_connection = utf8_general_ci */;

SmartH2O – Databases of user information Page 94 D3.1 Version 3.1

/*!50001 CREATE ALGORITHM=UNDEFINED */

/*!50013 DEFINER=`root`@`localhost` SQL SECURITY DEFINER */

/*!50001 VIEW `headquarter_user_participation_monthly` AS select
`r`.`oid` AS `oid`,sum(`al2`.`score`) AS `participation_monthly`
from (`action_instance` `al2` join `community_user` `r`
on((`r`.`oid` = `al2`.`rank_oid`))) where ((month(`al2`.`date`) =
month(now())) and (year(`al2`.`date`) = year(now()))) group by
`r`.`oid` */;

/*!50001 SET character_set_client = @saved_cs_client */;

/*!50001 SET character_set_results = @saved_cs_results */;

/*!50001 SET collation_connection = @saved_col_connection */;

--

-- Final view structure for view
`headquarter_user_participation_seven_days`

--

/*!50001 DROP TABLE IF EXISTS
`headquarter_user_participation_seven_days`*/;

/*!50001 DROP VIEW IF EXISTS
`headquarter_user_participation_seven_days`*/;

/*!50001 SET @saved_cs_client = @@character_set_client */;

/*!50001 SET @saved_cs_results = @@character_set_results */;

/*!50001 SET @saved_col_connection = @@collation_connection */;

/*!50001 SET character_set_client = utf8 */;

/*!50001 SET character_set_results = utf8 */;

/*!50001 SET collation_connection = utf8_general_ci */;

/*!50001 CREATE ALGORITHM=UNDEFINED */

/*!50013 DEFINER=`root`@`localhost` SQL SECURITY DEFINER */

/*!50001 VIEW `headquarter_user_participation_seven_days` AS select
`r`.`oid` AS `oid`,sum(`al3`.`score`) AS `participation_seven_days`
from ((`community_user` `r` left join `action_instance` `al3`
on((`r`.`oid` = `al3`.`rank_oid`))) left join `action_type` `al4`
on((`al3`.`action_type_oid` = `al4`.`oid`))) where ((`al3`.`date` <=
now()) and (`al3`.`date` >= (now() - interval 7 day)) and
(`al4`.`participation` = 1)) group by `r`.`oid` */;

/*!50001 SET character_set_client = @saved_cs_client */;

/*!50001 SET character_set_results = @saved_cs_results */;

/*!50001 SET collation_connection = @saved_col_connection */;

--

-- Final view structure for view `max_date_action_instance`

--

/*!50001 DROP TABLE IF EXISTS `max_date_action_instance`*/;

/*!50001 DROP VIEW IF EXISTS `max_date_action_instance`*/;

/*!50001 SET @saved_cs_client = @@character_set_client */;

/*!50001 SET @saved_cs_results = @@character_set_results */;

SmartH2O – Databases of user information Page 95 D3.1 Version 3.1

/*!50001 SET @saved_col_connection = @@collation_connection */;

/*!50001 SET character_set_client = utf8 */;

/*!50001 SET character_set_results = utf8 */;

/*!50001 SET collation_connection = utf8_general_ci */;

/*!50001 CREATE ALGORITHM=UNDEFINED */

/*!50013 DEFINER=`root`@`localhost` SQL SECURITY DEFINER */

/*!50001 VIEW `max_date_action_instance` AS select
`action_instance`.`action_type_oid` AS
`action_type_oid`,`action_instance`.`rank_oid` AS
`rank_oid`,max(`action_instance`.`date`) AS `maxDate` from
`action_instance` group by
`action_instance`.`action_type_oid`,`action_instance`.`rank_oid` */;

/*!50001 SET character_set_client = @saved_cs_client */;

/*!50001 SET character_set_results = @saved_cs_results */;

/*!50001 SET collation_connection = @saved_col_connection */;

--

-- Final view structure for view `mostimportant_badge`

--

/*!50001 DROP TABLE IF EXISTS `mostimportant_badge`*/;

/*!50001 DROP VIEW IF EXISTS `mostimportant_badge`*/;

/*!50001 SET @saved_cs_client = @@character_set_client */;

/*!50001 SET @saved_cs_results = @@character_set_results */;

/*!50001 SET @saved_col_connection = @@collation_connection */;

/*!50001 SET character_set_client = utf8 */;

/*!50001 SET character_set_results = utf8 */;

/*!50001 SET collation_connection = utf8_general_ci */;

/*!50001 CREATE ALGORITHM=UNDEFINED */

/*!50013 DEFINER=`root`@`localhost` SQL SECURITY DEFINER */

/*!50001 VIEW `mostimportant_badge` AS select
`badge`.`badge_instance` AS `oid`,`rr`.`oid` AS
`rankoid`,`dict`.`area` AS `area`,`dict`.`title` AS
`title`,`badge`.`importance` AS
`importance`,`dict`.`checked_image_2` AS
`checked_image_2`,`dict`.`checked_imageblob` AS
`checked_imageblob`,`dict`.`hd_checked_image_2` AS
`hd_checked_image_2`,`dict`.`hd_checked_imageblob` AS
`hd_checked_imageblob`,`dict`.`sort_number` AS `sort_number` from
((`badgeimportancebyuser` `badge` join `community_user` `rr`) join
`badge_type` `dict`) where ((`dict`.`area` =
`badge`.`nickname_area`) and (`dict`.`importance` =
`badge`.`importance`) and (`rr`.`oid` = `badge`.`user`)) */;

/*!50001 SET character_set_client = @saved_cs_client */;

/*!50001 SET character_set_results = @saved_cs_results */;

/*!50001 SET collation_connection = @saved_col_connection */;

--

SmartH2O – Databases of user information Page 96 D3.1 Version 3.1

-- Final view structure for view `user_information`

--

/*!50001 DROP TABLE IF EXISTS `user_information`*/;

/*!50001 DROP VIEW IF EXISTS `user_information`*/;

/*!50001 SET @saved_cs_client = @@character_set_client */;

/*!50001 SET @saved_cs_results = @@character_set_results */;

/*!50001 SET @saved_col_connection = @@collation_connection */;

/*!50001 SET character_set_client = utf8 */;

/*!50001 SET character_set_results = utf8 */;

/*!50001 SET collation_connection = utf8_general_ci */;

/*!50001 CREATE ALGORITHM=UNDEFINED */

/*!50013 DEFINER=`root`@`localhost` SQL SECURITY DEFINER */

/*!50001 VIEW `user_information` AS select `r1`.`oid` AS
`oid`,`r1`.`country` AS `country`,`r1`.`geographical_area` AS
`area_geografica`,`r1`.`small_photo` AS
`small_photo`,`r1`.`big_photo` AS `big_photo`,`r1`.`first_name` AS
`first_name`,`r1`.`last_name` AS `last_name`,`r1`.`twitter` AS
`twitter`,`r1`.`linkedin` AS `linkedin`,`r1`.`website` AS
`website`,`r1`.`bio` AS `bio`,`r1`.`city` AS
`city`,`r1`.`company_name` AS `company_name`,`c1`.`email` AS
`email`,`c1`.`internal` AS `internal` from (`community_user` `r1`
join `user` `c1` on((`c1`.`user_id` = `r1`.`oid`))) where
(`r1`.`public_profile` = 1) */;

/*!50001 SET character_set_client = @saved_cs_client */;

/*!50001 SET character_set_results = @saved_cs_results */;

/*!50001 SET collation_connection = @saved_col_connection */;

/*!40103 SET TIME_ZONE=@OLD_TIME_ZONE */;

/*!40101 SET SQL_MODE=@OLD_SQL_MODE */;

/*!40014 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS */;

/*!40014 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS */;

/*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;

/*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;

/*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;

/*!40111 SET SQL_NOTES=@OLD_SQL_NOTES */;

-- Dump completed on 2015-04-30 17:52:09

