

PLATFORM ARCHITECTURE AND
DESIGN

SmartH2O

Project FP7-ICT-619172

Deliverable D6.2 WP6

Deliverable
Version 3.0 – 2 June 2015

Document. ref.:
D6.2.POLIMI.WP6.V3.2

SmartH2O – Platform Architecture and Design D6.2 Version 3.2

Programme Name: ICT
Project Number: 619172
Project Title: SmartH2O
Partners: .. Coordinator: SUPSI

Contractors: POLIMI, SETMOB, TWUL, SES,
MOONSUB

Document Number: smarth2o. D6.2.POLIMI.WP6.V3.2
Work-Package: WP6
Deliverable Type: Document
Contractual Date of Delivery: 31 December 2014
Actual Date of Delivery: 31 May 2015
Title of Document: Platform Architecture and Design
Author(s): Piero Fraternali, Luigi Caldararu, Sever Calit,

Jasminko Novak, Chiara Pasini, Giorgia
Baroffio, Marco Tagliasacchi, Andrea Emilio
Rizzoli.

Approval of this report Submitted for approval by EC

Summary of this report: D6.2 Platform Architecture and Design

History: .. See version history.

Keyword List: platform, architecture, integration, component,

services, data model

Availability This report is public

This work is licensed under a Creative Commons Attribution-NonCommercial-

ShareAlike 3.0 Unported License.
This work is partially funded by the EU under grant ICT-FP7-619172

SmartH2O – Platform Architecture and Design D6.2 Version 3.2

Document History

Version Date Reason Revised by
2.0 30/12/2014 First submission of the

deliverable
A.E. Rizzoli

3.0 2/6/2015 Revision according to
reviewers requests: added a
detailed description of the
deployment architecture.
Added two annexes describing
the languages, frameworks,
and technologies and the IFML
schemas for the Platform front-
end.

Sever Calit, Luigi
Caldararu, Piero
Fraternali, Giorgia
Baroffio, Chiara
Pasini, Andrea E.
Rizzoli

3.1 3/6/2015 Version after the quality check Sever Calit, Luigi
Caldararu, Piero
Fraternali, Giorgia
Baroffio, Chiara
Pasini, Andrea E.
Rizzoli

3.2 28/7/2015 Added page numbers A.E. Rizzoli

SmartH2O – Platform Architecture and Design D6.2 Version 3.2

Disclaimer
This document contains confidential information in the form of the SmartH2O
project findings, work and products and its use is strictly regulated by the
SmartH2O Consortium Agreement and by Contract no. FP7- ICT-619172.

Neither the SmartH2O Consortium nor any of its officers, employees or agents
shall be responsible or liable in negligence or otherwise howsoever in respect of
any inaccuracy or omission herein.

The research leading to these results has received funding from the
European Union Seventh Framework Programme (FP7-ICT-2013-11) under
grant agreement n° 619172.

The contents of this document are the sole responsibility of the SmartH2O
consortium and can in no way be taken to reflect the views of the European Union.

SmartH2O – Platform Architecture and Design D6.2 Version 3.2

Table of Contents
1.! INTRODUCTION 2!
2.! DATA MODEL STRUCTURE 4!

2.1! CONSUMER DATA MODEL 4!
2.2! GAMIFICATION DATA MODEL 6!
2.3! GAMES PLATFORM DATA MODEL 7!

3.! THE SMARTH2O ARCHITECTURE SPECIFICATION 10!
3.1! SPECIFICATION OF THE USER GROUPS 10!
3.2! OVERVIEW OF THE ARCHITECTURE COMPONENTS 14!
3.3! WATER UTILITY CUSTOMER PORTAL 17!

3.3.1! Main Use Cases 18!
3.4! GAMIFICATION ENGINE 21!

3.4.1! Main Use Cases 24!
3.4.2! Component Interfaces Specification 29!

3.5! GAMES PLATFORM 33!
3.5.1! Main Use Cases 34!

3.6! ENTERPRISE SERVICE BUS (ESB) 37!
3.6.1! Component Interfaces Specification 40!

3.7! SMART METER DATA MANAGER 40!
3.7.1! Main Use Cases 41!

3.8! PORTAL DATA EXCHANGE MANAGER 42!
3.8.1! Main Use Cases 43!
3.8.2! Component Interfaces Specification 47!

3.9! WATER UTILITY ADMIN PORTAL 49!
3.9.1! Main Use Cases 51!

3.10! AUTHENTICATION GATEWAY 57!
3.10.1! Main Use Cases 58!

3.11! PRICING ENGINE, AGENT BASED MODELLING AND MODELS OF USER
BEHAVIOUR 60!

4.! DEPLOYMENT ARCHITECTURE 62!
4.1! DEVELOPMENT ENVIRONMENT DEPLOYMENT 64!
4.2! PRODUCTION ENVIRONMENT DEPLOYMENT 65!

5.! CONCLUSIONS AND OUTLOOK 69!
6.! REFERENCES 70!
7.! ANNEX 1 – LIST OF LANGUAGES, FRAMEWORKS AND TECHNOLOGIES 71!
8.! ANNEX 2 – USER INTERACTION FLOWS 74!

8.1! IFML IN A NUTSHELL 74!
8.1.1! Scope and perspectives 74!
8.1.2! Overview of IFML main concepts 76!
8.1.3! Role of IFML in the development process 80!
8.1.4! A complete example 80!

8.2! IFML SPECIFICATION OF THE CUSTOMER PORTAL BASIC VERSION 84!
8.2.1! Project 84!

SmartH2O – Platform Architecture and Design D6.2 Version 3.2

8.2.2! [SiteView] Consumer Portal 85!
8.2.3! [MasterPage] UserProfile 87!
8.2.4! [MasterPage] UserProfile (Layout) 87!
8.2.5! Statistics 88!

8.3! IFML SPECIFICATION OF THE CUSTOMER PORTAL ADVANCED VERSION 90!
8.3.1! Project 90!
8.3.2! [SiteView] Private 91!
8.3.3! Statistics 110!

8.4! IFML SPECIFICATION OF THE CUSTOMER PORTAL ADMIN VERSION 113!
8.4.1! Project 113!
8.4.2! [SiteView] Administration 114!
8.4.3! Statistics 153!

SmartH2O-Platform Architecture and Design Page 1 D6.2 Version3.2

Executive Summary

This document is the Deliverable D6.2: Platform Architecture and Design, which,
according to the Description of Work, has the following goals:

- describe the information and data models, the platform components, services, and
applications, communication protocols;

- describe the integration model that enables various platform modules to interact with
each other.

This deliverable will be updated as necessary during the lifetime of the project, to reflect the
current status of the design, as part of the documentation accompanying the planned
releases of the platform implementation (D6.3 at month 12, D6.4 at month 24, and D6.5 at
month 36), in order to provide the necessary information to proceed through the three
deployments foreseen for the SmartH2O platform.
The deliverable is structured as follows:

- Section 1 recalls the essential concepts at the base of the design of the SmartH2O
platform.

- Section 2 illustrates the revisions to the data model underlying the platform; the
description extends the original data model, presented in the deliverable D3.1
Database of user information.

- Section 3 contains the specifications of the main components of the platform:
o The Water Utility Customer Portal (section 3.3)
o The Gamification Engine (section 3.4)
o The Games Platform (section 3.5)
o The Enterprise Service Bus (section 3.6)
o The Smart Meter Data Manager (section 3.7)
o The Portal Data Exchange Manager (section 3.8)
o The Water Utility Admin Portal (section 3.9)
o The Authentication Gateway (section 3.10)
o The preliminary specifications of the Pricing Engine, Agent Based Modelling,

and Models of User Behaviour components conclude the section; they will be
expanded following the progress in the technical work.

- Section 4 describes the deployment architecture: in particular how different
technologies interplay in the implementation of the Service Oriented Architecture of
SmartH2O.

- Section 5 concludes the deliverable with an outlook on the next steps in the design of
the SmartH2O platform.

- At the end of the deliverable, after the References section, Annexes provide
additional technical information on:

o ANNEX 1 (Section 7): The list of languages, frameworks and technologies
used in the platform development.

o ANNEX 2 (section 8) after a brief introduction to the OMG Interaction Flow
Modelling Language [Bramb2014] (the UML profile for interaction flow
specification in interfaces) the specifications of the SmartH2O front-end are
given, divided in three subsections: Section 8.1, Section 8.2, Section 8.3
contain the interaction flow diagrams for the front-end of the SmartH2O
platform, according to the IFML OMG standard.

SmartH2O-Platform Architecture and Design Page 2 D6.2 Version3.2

1. Introduction

The SmartH2O project is developing an ICT platform for improving the management of urban
and peri-urban water demand, based on the integrated use of smart meters, social
computation, and dynamic water pricing, powered by advanced models of consumer
behaviour.
The SmartH2O platform can support the cooperation of water utilities, municipalities and
citizens to implement better water management practices and policies, leading to a reduction
in water consumption, without compromising the quality of life, and to an increase in resource
security.
The SmartH2O project must be able to:

- Understand and model the consumers’ current behaviour on the basis of historical
and real-time water usage data;

- Predict how the consumer behaviour can be influenced by various water demand
management policies, from water savings campaigns, to social awareness
campaigns, to dynamic water pricing schemes;

- Raise the awareness of water consumers on their current water usage habits and
their lifestyle implications and to stimulate them to reduce water use.

- Integrate with other systems, such as the portal of the utility company or a digital
game platform, in order to provide a coherent experience to the water consumer.

The SmartH2O ICT infrastructure will thus enable water managers to close the loop between
actual water consumption levels and desired targets, using information about how the
consumers have adapted their behaviour to the new situation (e.g. new regulations, new
water prices, and appeals to water savings during droughts). This feedback will then allow
water management companies and decision makers to aptly revise the water demand
management policies, enabling to maximise the water and energy saving goals.
Figure 1, originally provided in the SmartH2O description of work, describes the envisioned
flow of information and control supported by the SmartH2O platform.
The behaviour of a water user is gathered by collecting data on its water consumption by
means of smart meters and, at the same time, by an online social participation application
(the social game) where qualitative information about the user preferences and attitudes are
collected. This information is processed and the user is “profiled” in order to produce a
synthetic user behaviour model, which will be then fed in an agent-based simulation model.
The social participation applications are then also used to deploy policies in the real world.
The consumers will receive signals, such as incentives to save water in specific
environmental conditions, or such as dynamic price information. Once the policies are
deployed, the SmartH2O platform allows continuous monitoring of the users’ aggregate
behaviour, i.e. their water consumption, in order to suggest other actions if the original policy
loses effectiveness.
This deliverable reflects the current status of the design of the technical components that
map the data and control flows depicted in Figure 1 into a concrete technical space,
assigning computation and integration responsibility to core software modules.
For each core module, this deliverable reports the essential technical use cases and interface
that the module supports. The technical use cases must be interpreted as a derivation of the
high-level use cases described in the requirements deliverable: D2.1 Use cases and early
requirements. They embody the flow of messages, queries, and service calls that support the
actual execution of the user-oriented usage scenarios specified in D2.1.

SmartH2O-Platform Architecture and Design Page 3 D6.2 Version3.2

Figure 1: The flow of information and control in SmartH2O.

SmartH2O-Platform Architecture and Design Page 4 D6.2 Version3.2

2. Data Model Structure
In this section we describe the updated version of the SmartH2O database, previously
defined in deliverable D3.1 Database of User Information. Such updates stem from the
progress in the specification of the user’s requirements and of the system architecture, which
prompted for the refinement of aspects mostly related to the user’s profile data.

Figure 2: User Groups Relational Model.

Figure 2 recalls the data model for implementing Role Based Access Control (RBAC). Users
are clustered in Groups, which represent the various classes of users. Groups are connected
to Modules, which represent the interfaces to the SmartH2O resources that the class of users
is entitles to access.

2.1 Consumer Data Model

According to the early mock-ups and functional requirements illustrated in D2.1 Use cases
and early requirements, a series of changes have been made to the Consumer Data Model
proposed in the deliverable D3.1 Databases of user information.
The resulting updated schema is reported in Figure 3:

SmartH2O-Platform Architecture and Design Page 5 D6.2 Version3.2

Figure 3: Consumer Relational Model.

In order to provide more appropriate and targeted incentives, users are grouped into
consumer segments, using algorithms provided by the Models of User Behaviour component.
The following entities have been introduced:

• Consumer Segment: each segment is identified by unique id, a name and a
description. A segment of users is characterized by a set of features.

• Feature: each feature refers to a specific consumer segment, and it is identified by a
unique id, a type and a level (e.g. Consumption Average: medium, Environmental
Commitment: high).

• Users Segments: this entity stores the members of each user segment.

In order to encourage a rational use of water some tips are provided to the consumers. The
following entities have been introduced:

• Tip: each tip is identified by a unique id, a name and the text content divided into a
header and a body.

• Tip Tracking: this entity keeps track of the tips which have been provided to a user.

In order to warn users about possible leaks or bad water quality, alerts will be provided. The
following entities have been introduced:

• Alert: each alert is identified by a unique id, a type (e.g. Water Quality Alert, Leakage
Alert, Shortage alert), a level (e.g. low, medium, high) and the receiver user id. When
a new alert is inserted, the current date is stored in order to keep track of the
progress of a particular type of alert and to record past critical situations. However
the latest alert of a given type will be provided to the user.

• Mail: an alert can be associated to a mail, in order to directly notify the user. Each
email is identified by a unique id, a description, the subject of the email, the body of
the email and the language.

SmartH2O-Platform Architecture and Design Page 6 D6.2 Version3.2

The system deals with different physical quantities (e.g. water consumption, temperature). In
order to take into account the different units of measurement used in different countries, the
system will store them in order to make the correct unit conversions. The following entity has
been introduced:

• Unit Of Measurement: each unit conversion is characterized by a unique id, the
primary unit of measure, the secondary unit of measure and the coefficient to be
applied in order to perform the conversion.

The system can also display water info material like videos, providing information about
topics related to water saving. The following entities have been introduced:

• Media Asset: each media object is identified by a unique id, a title, a description, the
author, the duration of the video and the URL of the media object.

Additionally some attributes have been introduced in the following entities:

• House:
o Public: a flag stating if the house holder user agrees that his/her family is

involved in a public competition and consents to appear in the public
leaderboard (D2.1: use case 9.19).

o Visible: a flag stating if the house holder user consents to disclose
information about his house location to other users (D2.1: use case 9.21).

• Neutral User:
o Currency: the currency selected by the user, which will be associated to the

bill quantities.
o Language: the language of the user.
o Temperature Unit and Length Unit: the units of measurements selected for a

given user.
o Public: a flag stating if the user agrees to participate to the competition and to

appear in the family leaderboard (D2.1: use case 9.17).
• Bill:

o Currency: the currency of a given bill.
o Volume Charge and Service Charge: they are needed in order to be able to

sort bills and compare them.
o Exchange Rate and Exchange Date: they are needed in order to store the

conditions at the time when the bill was emitted.

2.2 Gamification Data Model

According to the early mock-ups and functional requirements, the changes illustrated in the
following have been made to the Gamification Data Model proposed in the deliverable D3.1
[Bozzon2014, Karam2012].
The resulting updated schema is depicted in Figure 4.

SmartH2O-Platform Architecture and Design Page 7 D6.2 Version3.2

Figure 4: Gamification Relational Model.

In order to allow the Content Editor of the Gamification Engine portal to organize actions and
badges according to topics, the thematic area entity has been introduced:

• Thematic Area: each thematic area is identified by a unique id and a name. Each
action or badge belongs to a specific thematic area.

In order to allow the Content Editor of the Gamification Engine to define the rules for the
actions coming from game results, which are involved in the gamified competition, the
following entities have been introduced:

• Game Result: each game result is identified by a unique identifier, a title (e.g. New
Level Reached) and optionally by a score, a level and the current available lives.
Each game result is mapped to an Action Type and, according to the game results
attributes (score, level, lives) the game result is converted into gamification engine
credits.

• Game Points Converter: each conversion is identified by a unique id, the game to
which the conversion rule is applied, and the customizable formula which will take the
attributes as inputs (score, level, lives) and will produce gamification credits as
output.

The application will provide water-saving goals to the users, to be achieved by performing
different actions. Users can also form coalitions, inviting the rest of his family to join, and save
water collaboratively with friends, family and neighbours. The following entities have been
introduced:

• Alliance: each coalition among competitor users is identified by a unique id, a start
date and an end date.

• Alliance Members: this entity stores the members of each alliance.
• Goal: each goal is identified by a unique id, a title, a score, and optionally the

completion date. A goal can be assigned to a given user or to an alliance of users.
• Goal Actions: this entity stores which actions can be performed by users to achieve

a particular goal.

2.3 Games Platform Data Model

Figure 5 illustrates the schema of the database supporting game data persistence
[Bozzon2014, Karam2012].

SmartH2O-Platform Architecture and Design Page 8 D6.2 Version3.2

Figure 5: Games Platform Relational Model.

Game is the core entity: the Mode attribute represents the gameplay modes (e.g. Single
Player, Multi Player, Cooperative), while the Genre attribute identifies its genre (e.g. Puzzle,
Educational). Each game is also characterized by a Title, a Theme and the
Minimum/Maximum number of players.

An Achievement has an Icon, which describes it in a visual way, a Category that specifies
the task (Instructor, Grinder), an attribute PointsGiven, which contains the amount of points to
be granted, and a Boolean attribute OfTheDay defining whether the achievement has to be
completed on a specific day in order to obtain virtual goods, more points, or increased levels.

The Player entity accommodates game-specific personal and social features. Avatar and
Nickname allow the user to be recognizable by using a custom image or a unique fictional
name, while Player Type, Player Level and Experience Points convey player progress.
Reputation in online gaming communities is fundamental and distinctive feature of any player;
being able to recognize wheter a player is bad mannered, prone to cheating, unpleasant to
play with is of utterly importance to assure a satisfying gaming experience for the user of an
entertainment platform; it is usually measured as an integer number ranging from 0 to 5.

The model describes also the game-relevant statistics (GameStats): the proficiency and the
experience of a player in a given game are represented by aggregating in a compact way

SmartH2O-Platform Architecture and Design Page 9 D6.2 Version3.2

such indicators as points gathered and hours spent playing.

GameBadges represent the achievements that have been unlocked by a player.
The CompletionPercentage field shows how much the player has already achieved in a
specific task. StartDate and EndDate record the dates in which the player has started to work
on the achievement's goals and the date in which he has obtained it. The TrialsN attribute
tracks how many times the user tried to fulfill the achievement.

A GamePlayAction of a player, associated with a specific Gameplay, records the StartDate
and EndDate of the gaming session and the actual actions performed by the player on that
specific time frame and the Role defines which are the allowed actions in the game for the
role associated to a player.

In order to store questions and answers required by the Drop!TheQuestion trivia game,
Question and Answer entities have been provided. QuestionInstance keeps track of
players game play information related to the specific quiz game.

SmartH2O-Platform Architecture and Design Page 10 D6.2 Version3.2

3. The SmartH2O architecture specification
The SmartH2O platform is a distributed architecture for brokering data and services among a
variety of heterogeneous systems and users, supporting the flows depicted in Figure 1.

3.1 Specification of the user groups

To better understand the nature of the user interfaces visible in Figure 10, Figure 6 recalls the
taxonomy of the various user roles identified in the requirement analysis, as reported in D2.1
Use cases and early requirements.

Figure 6: Taxonomy of the user groups in SmartH2O (from D2.1 Use Cases and Early
Requirements).

A first distinction among user groups is between Consumer and Admin: the former is the
generic user who can access the services provided by the SmartH2O platform; the latter is
instead in charge of managing the services provided by the SmartH2O platform.
Consumers are partitioned into sub-groups based on which services they access.
• Player users are the ones who play the Games provided by the SmartH2O platform.

They can be:
o Casual Players: they are not registered visitors interested in playing a game.
o Registered Players: they are registered to the Games platform.

• Customers are users registered to the Consumer Portal, who access in order to monitor
their water consumption and water bill. They can be:

SmartH2O-Platform Architecture and Design Page 11 D6.2 Version3.2

o Smart metered users: they are customers having smart meters system installed
in their house. The water meter measures the customer’s water consumption
automatically.

o Standard metered users: they are customers not having smart meters system
installed in their house. They need to manually input consumption data into the
gamification engine.

o Inheriting properties from both Smart metered and Standard metered consumers,
we find the following specialisations:

! Competitor users: they are the ones who accepted to participate to the
gamification mechanisms, including execution of actions, acquisition of
badges and redemption of rewards. A competitor can be a:

• House holder user: he/she is the responsible of a specific
house. He/She can add other family members to the
Gamification Engine and create collaborations with neighbours.

• At the bottom of the hierarchy, inheriting from House holders,
Competitors and from RegisteredPlayers, we find:

o CustomerPlayers are users who are registered
both to the Gamification Engine and the Games
Platform. They have the possibility to collect points
either by performing actions provided in the
gamification engine or by playing the available
games.

Admin users are partitioned into sub-groups based on which services they manage.
• Content Editors are administrators in charge of creating the content of the applications

composing the smart water system.
o Gamification Engine Content and Rules Editors: they are in charge of

creating the content related to the gamification platform (the one used by
Competitor users) such as actions, rewards and goals. They are also in charge
of defining the rules to assign the suitable amount of points to each action.

o Consumer Portal Content Editors: they are in charge of creating the content
related to the platform used by Customer users, such as tips to improve water
saving, teaching videos.

o Games Platform Content Editors: they are in charge of creating the content
related to the games, such as the questions provided in a quiz game related to
generic water consumption topics.

! Utility Games Platform Content Editor: they are a specialization of the
Games Content Editor users, related to a specific utility game. For
example they manage the specific questions provided in a quiz game.

• Supervisors are administrators in charge of monitoring and managing system data.
They can be:

o Consumption Supervisor: they are in charge of modelling user’s consumption.
o Gamification Engine Supervisor: they are in charge of profiling users, making

available users clusters that can be used to suggest the most suitable actions to
perform.

Figure 7, Figure 8 and Figure 9 show the essential UML class diagram that represents the
user groups that implement the taxonomy of Figure 6.

SmartH2O-Platform Architecture and Design Page 12 D6.2 Version3.2

Figure 7: User groups class diagram.

SmartH2O-Platform Architecture and Design Page 13 D6.2 Version3.2

Figure 8: Consumer group package class diagram within user groups.

SmartH2O-Platform Architecture and Design Page 14 D6.2 Version3.2

Figure 9: Admin group package class diagram within user groups.

3.2 Overview of the architecture components

Figure 10 illustrates the main components that constitute the SmartH2O platform.
The SmartH2O Database is the central repository of the information that is either common to
all the SmartH2O components or supports the coordination and exchange of messages
among them. Not all the data of SmartH2O will reside in the SmartH2O database; for
example, commercial data about the water consumers maintained by the water utility will be
stored in the proprietary systems of the company.
The Enterprise Service Bus (from now on, ESB) is a middleware layer that supports the
loose coupling of the SmartH2O components; it permits the publication of their interfaces
(Application Programming Interfaces, APIs) and the synchronous and asynchronous
communication among components. The goal of the ESB is to decouple the heterogeneous
components of the SmartH2O platform as much as possible, to support the extension with
new services and functions and the rapid adaptation of the platform to new contexts (e.g.,
other utility companies with different IT standards and information systems).
The Smart Meter Data Manager deals with the acquisition of data streams from smart
meters and with their consolidation within the SmartH2O database. It implements the data
privacy and security policy of the utility company and ensures that only admissible (e.g.,

SmartH2O-Platform Architecture and Design Page 15 D6.2 Version3.2

aggregated, anonymised) data is stored within the platform database.
The Water Utility Consumer Portal is a component, typically embedded within the
proprietary portal services of the utility company, which supports the interaction between the
utility customers and the SmartH2O awareness functionality. The integration is lightweight:
the consumer will navigate from the standard GUI of the utility company to what she sees as
a special section of the portal, where she can access the awareness tools and interfaces
developed by SmartH2O.
The Water Utility Admin Portal is a component, integrated within the proprietary portal
services of the utility company, which supports the work of the supervisor in the analysis of
the water consumption data and of the outcome of the gamification rules; it also supports the
work of the content editor, who administers the content (e.g., tips, articles, news, etc.)
published to the customers. The portal also offers interfaces to the water utility operators to
run simulations, based on the models embodied in the Models of User Behaviour component
and on the algorithms implemented in the Pricing Engine and in the Agent Based Modelling
component.
The Portal Data Exchange Manager deals with the data exchange communication that
occurs “behind the scenes” among the SmartH2O platform and the third party applications
already supporting the interaction with the various types of users. Such applications may
comprise the “standard” customers’ portal of the utility company, or a B2E application for the
utility company’s supervisors.
The Gamification Engine is a back-end component that embodies rules for transforming
users’ actions into gamification scores and achievements. It is exploited in order to “gamify”
the water consumption of the users, according to the awareness approach implemented by
SmartH2O. It has an interface for the end-user, who sees the results of her water
consumption actions; and administrative interfaces for the utility company’s managers and
operators, who can supervise the outcome of the awareness policies and define the rules that
reward the actions of water consumers.
The Games Platform supports the execution of all the digital games of SmartH2O, including
the games that are played as part of the interaction with the Drop! board game (for a
description of the current status of the social awareness applications, including the
SmartH2O games, see deliverable D4.1: First social game and implicit user information
techniques. The Games Platform must also support casual players, and thus has an
independent users’ registration procedure, as well as a procedure for enrolling users that are
already registered in the Utility Portal. The Games Platform exposes two kinds of interfaces:
one or more digital games directed to the end users; an administrative interface, directed to
the content editors of the game platform. The GUIs are served by a local database (the
Games DB), which stores information that is pertinent only to the game play (e.g., the gaming
history of players not registered in the Utility Portal).
The Pricing Engine allows water utility companies to assess the impact for various dynamic
pricing algorithms on their customer behaviour. The pricing engine will use consumption data,
user profile data, external input like meteorological data, water supply forecast. The Pricing
Engine will model the user elasticity to different pricing schemes and it will be able to report
how pricing stimuli can impact aggregate customer behaviour. The Pricing Engine also allows
the Consumer to estimate the cost of its water use according to different pricing schemas,
ranging from the actual tariff, to various simulated tariffs, which are evaluated in the
SmartH2O project.
The Models of User Behaviour component contains models and algorithms for profiling the
behaviour of water consumers. It contains a classification algorithm that creates user
segments (classes of users with similar behaviour) on the basis of their features. It also
contains a disaggregation algorithm that can attribute the end uses of the total amount of
water used by a household during one day, with a certain degree of approximation. This
algorithm is also used to identify the relevant features to be used in classification. Through
the use of the SmartH2O platform supplemental features will be generated, such as the
influence of social awareness (obtained by the Gamification component) or the sensibility to
price changes (obtained by the pricing engine).
In summary, through this component, the water utility can visualize the water consumption of

SmartH2O-Platform Architecture and Design Page 16 D6.2 Version3.2

each customer at a fixture/appliance level, in order to identify consumption patterns and
trends, and thus identifying the most promising areas where conservation efforts may be
polarized. For a description of the algorithms exploited to model the user behaviour, see
deliverable D3.2: First user behaviour models.
The Agent Based Modelling component allows the water utility to simulate whole districts of
users, thus extrapolating user models provided by the Models of User Behaviour component
at a larger scale and also extrapolating the impact of network effects due to users’
interactions, both in the physical and in the virtual world. The agent based model includes
influence/mimicking mechanisms and social interaction among the consumers, and thus will
be employed by the water utility to understand how some user types (leaders/influencers) can
stimulate a behavioural change on other users.
The Authentication Gateway component centralizes user registration into the SmartH2O
platform database for the users registered in the components having own user database.
Also, this component provides an unique point for authentication to all the users primarily
registered at a component level, in order to allow logging in to other components by using the
original set of credentials without the need to perform another registration.
The Social Network Crawler and Data Analyser component allows the platform, where
deemed appropriate by the water utility portal, to launch social data analysis campaigns to
identify relevant users and content in the area of sustainable water consumption. For
example, this component supports the crawling of Twitter data in order to automatically find
people and content relevant for a thematic area, such as water consumption.
The Social Network Connector component has a dual role with respect to the Social
Network Crawler and Data Analyser; it allows the Consumer, Player, and Competitor users to
post their achievements from the SmartH2O Water Utility Portal and Games Platform to the
social network of their preference, in order to engage people from their social circle to the
water consumption and sustainability campaigns of the water utility company

SmartH2O-Platform Architecture and Design Page 17 D6.2 Version3.2

 Figure 10: overview of the main components of the SmartH2O architecture.

3.3 Water Utility Customer Portal

Figure 11: Water Utility Customer Portal Component diagram.

This component includes:

- the Utility Portal in which the user can see his household consumption, water saving
tips and alerts, and water saving educational content. This UI integrates inputs from
different components (e.g. the smart meter data management)

SmartH2O-Platform Architecture and Design Page 18 D6.2 Version3.2

Component Name Water Utility Consumer Portal

Leader POLIMI

Partners SETMOB

Goals The component manages the visualization of the water consumption
status for a Customer User

User use cases 8.2 Use case: Collecting consumption data
8.3 Use case: Manually collecting consumption data
8.6 Use case: Utility Portal Signup
8.7 Use case: Visual exploration of water consumption
information
8.8 Use case: Visual exploration of water consumption at
fixture/appliance level
8.9 Use case: Providing water consumption alerts
8.11 Use case: Providing water consumption tips
8.12 Use case: Modifying User Settings
8.13 Use case: Utility Portal Unsubscription

Provided Interfaces This component is a web application, which integrates inputs from
external sources. It does not provide interfaces to other components.

Dependencies /
Required Interfaces

The component requires the implementation of the following
interfaces:

- [GET]user(userid): returns all the metadata for the specified
user

- [GET]exists(userEmail): returns true if a user with
the specified email exists, false otherwise

- [GET]billByUser(userId): returns a short recap of the bill for
the logged user

- [GET]waterConsuptionStatisticsByUser(userId) returns the
statistics of water consumption for the logged user

- [GET]tips(userId): returns a list of tips for a specified user
- [GET]waterUsageAlerts(userId): returns the list of usage

alerts for the logged user
- [GET]mediaContent(userID): videos, tutorial etc: may

depends on the users
- [POST]signup: pushes a registration to the SmartH2O DB
- [POST]unsubscribe: remove a registration to the SmartH2O

DB
- [POST]updateUserProfile: updates user profile information

like: family members, house configuration, appliances etc..

3.3.1 Main Use Cases

Use Case 1.1: House Holder Signup

SmartH2O-Platform Architecture and Design Page 19 D6.2 Version3.2

Use Case 1.1 House Holder Signup

Goal in Context The consumer performs a registration to the Water Utility Customer
Portal, his data are saved into the SmartH2O DB.

Precondition The consumer is a client of the utility that manages the portal.

Success End
Condition

The user becomes a Customer user, who can access the Utility
Portal.
The consumer is correctly saved into the DB.

Failed End
Condition

- A registration with the specified email already exists, this
registration is cancelled and the user is notified.

- The provided Utility Code does not exist or does not match
the user information; this registration is cancelled and the
user is notified.

Primary actors Customer, UtilityPortal

Secondary Actors ESB, SmartH2ODB, Authentication Gateway

Steps - the Customer requests the registration UI
- the Customer fill and send the registration form
- Water Utility Customer Portal verifies if the email was

already registered
- Water Utility Customer Portal verifies if the Utility Code

exists and is valid
- Water Utility Customer Portal saves the new user into the

SmartH2O DB

Note Fields in the registration form (see 2.1 Consumer Data Model):
address, residenceType, size, ownership, #occupants, #pets,
gardenArea, poolVolume, age, second, public, districtID,
hhEducationLevel, hhIncomeRate, hhName

SmartH2O-Platform Architecture and Design Page 20 D6.2 Version3.2

Figure 12: Sequence diagram Use Case 1.1.

Use Case 1.2: Visual Exploration Utility Data

Use Case 1.2 Visual Exploration Utility Data

Goal in Context The consumer explores his water consumption visualizing his
actions, his bills, tips, and alerts.

Precondition The consumer is logged to the platform

Success End
Condition

The consumer is able to visualize his data

Failed End
Condition

--

Primary actors Consumer, UtilityPortal

Secondary Actors ESB, SmartH2ODB

Steps - The customer requires to visualize the exploration page
- The Utility portal retrieves all the data and builds the page

Note --

SmartH2O-Platform Architecture and Design Page 21 D6.2 Version3.2

Figure 13: Sequence Diagram UseCase 1.2.

3.4 Gamification Engine

The Gamification Engine is a component that listens to the actions of the Competitor
consumer and of the Player and transforms them into a variety of rewards, for improving
activity and participation.
The need for a Gamification approach in SmartH2O has been described in D2.1 Use cases
and early requirements, by detailing the possible use case and motivations beyond this
choice. In particular, the definition of points, achievements and rewards allow water utility
companies to challenge their users with water saving goals to be achieved each month to
obtain individual water consumption and household data provisioning. The users of the
platform can be stimulated to adopt water saving behaviours by offering them gamified
pricing schemes and water consumption data, to make them aware of the impact of their
actions and the needs of the water utility company. The Gamification Engine is also used as
a mean for raising water consumption awareness by promoting sustainable behaviours for
families, friends and neighbours.

SmartH2O-Platform Architecture and Design Page 22 D6.2 Version3.2

Figure 14: Gamification Engine component diagram.

As shown in Figure 14, the Gamification Engine is the central component that handles the
communication with the main SmartH2O platform components and takes care of registering
users, converting users’ actions in other components into gamified actions for SmartH2O in
order to compute scores, badges, achievements and other gamified features and being able
to track and profile the users.
All the gamified data are stored in a Gamification Engine DB, in order to decouple the data
from the various water utilities portals with the one managed by SmartH2O.
To extend the features of the water utility customer portal, a Gamified Utility Portal UI,
tailored to the specific needs of the competitor users is created, in order to let the users of
this group access their gamified profile, the points collected, the achievements obtained, and
redeem the earned rewards.
The Gamification process has to be interactive and dynamically tailored to the rapid changes
requested by the scenarios and the community at hand; for these reasons, new goals,
rewards and achievement can be added in the platform by non-technical users through the
Gamification Engine Admin UI.
With the same interface, but less privileges, admins can also monitor the status of the
gamification campaign.

SmartH2O-Platform Architecture and Design Page 23 D6.2 Version3.2

Component Name Gamification Engine

Leader POLIMI

Partners --

Goals The component manages gaming scores and achievements and
visualize the user water consumption

User use cases 9.3 Use case: Gamification Engine Signup
9.5 Use case: Self setting consumption goals
9.6 Use case: Fulfilling consumption goals
9.7 Use case: Implementing water saving actions
9.8 Use case: Contributing household and user profiling
information
9.9 Use case: Declaring water consumption and action
information
9.10 Use case: Exploring gamification actions
9.12 Use case: Comparing achievements with family, friends and
neighbours
9.13 Use case: Inviting another user to join a collaboration
9.14 Use case: Collecting achievements collaboratively with other
family members
9.15 Use case: Collecting achievements collaboratively with
neighbours
9.16 Use case: Achieving goals collaboratively with other users
9.17 Use case: Making actions and earning digital points with the
games platform
9.18 Use case: Converting game actions into rewards
9.19 Use case: Gamification Engine self opt-in
9.20 Use case: Gamification Engine self opt-out
9.21 Use case: Gamification Engine family opt-in
9.22 Use case: Gamification Engine family opt-out
9.23 Use case: Geolocation opt-in
9.24 Use case: Geolocation opt-out
9.25 Use case: Defining family composition
9.26 Use case: Defining water consumption distribution rule
among family members
9.27 Use case: Learning interactively about innovative pricing
models

Provided Interfaces This component is a web application, which includes UIs and REST
APIs.
The APIs are:

- GET: GetActions
- GET: GetUserCredits
- GET: GetUserRewards
- POST: AssignActionsToUsers
- POST: RedeemUserReward
- POST: UserRegistration/userRegistration
- POST: UserUpdate/userUpdate

SmartH2O-Platform Architecture and Design Page 24 D6.2 Version3.2

Dependencies /
Required Interfaces

The component requires the implementation of the following
interfaces:

- [GET]user(userid): returns all the metadata for the specified
user

- [GET]exists(userEmail): returns true if a user with
the specified email exists, false otherwise

- [GET]billByUser(userId): returns a short recap of the bill for
the logged user

- [GET]waterConsuptionStatisticsByUser(userId) returns the
statistics of water consumption for the logged user

- [GET]tips(userId): returns a list of tips for a specified user
- [GET]waterUsageAlerts(userId): returns the list of usage

alerts for the logged user
- [GET]mediaContent(userID): videos, tutorial etc: may

depend on the users
- [GET]neighbors(userID): returns neighbors location (house

holders onl, same zip code)
- [POST]signup: pushes a registration to the SmartH2O DB
- [POST]userStatus (userID, online | offline): notify to the

SmartH2O DB the change of status of a user
- [POST]unsubscribe: remove a registration to the SmartH2O

DB
- [POST] selfOptIn
- [POST] selfOptOut
- [POST] familyOptIn
- [POST] familyOptOut
- [POST] geoOptIn
- [POST] geoOptOut
- [POST]addUserProfile: saves user profile information like:

family members, house configuration, appliances etc..
- [POST]updateUserProfile: updates user profile information

like: family members, house configuration, appliances etc..
- [POST]consumptionGoal(goal, userId): saves a consumption

gol defined by the user
- [POST]addConsuptionAction(userID, action): pushes a

consumption action (e.g “watering the garden for 15
minutes”) to the SmartH2O DB

3.4.1 Main Use Cases

Use Case 2.1: Gamification Engine Signup

Use Case 2.1 Gamification Engine Signup

Goal in Context The consumer performs a registration to the platform, his data are
saved into the SmartH2O DB.

Precondition The consumer is logged with his customer account.

Success End
Condition

The consumer becomes a Competitor customer and can exploit the
gamification extension of the customer portal.

Failed End
Condition

The consumer does not become a Competitor user, and cannot
exploit the gamification extension of the customer portal.

SmartH2O-Platform Architecture and Design Page 25 D6.2 Version3.2

Primary actors Consumer, GamificationEngine

Secondary Actors ESB, SmartH2ODB

Steps - the user requests the registration UI
- the user fill and send the registration form
- GamificationEngine adds the user to the competitor list
- GamificationEngine forward the registration to the

SmartH2ODB

Note Fields in the registration form: photo (see Figure 4)

Figure 15: Sequence Diagram Use Case 2.1.

Use Case 2.2: Visual Exploration Gamified Utility Data

Use Case 2.2 Visual Exploration Gamified Utility Data

Goal in Context The competitor explores his water consumption visualizing his
actions, his bills, his badges, the leaderboard etc.

Precondition The competitor is logged to the platform

Success End
Condition

The competitor is explores his gamified data

Failed End
Condition

--

Primary actors Competitor, GamificationEngine

Secondary Actors ESB, SmartH2ODB

SmartH2O-Platform Architecture and Design Page 26 D6.2 Version3.2

Steps - The competitor requests to visualized his gamified water
consumption page

- The GE Backend collects inputs from ESB (bill, alerts,
consumption) and from its internal DB (points, actions,
leaderboard)

- The GE Backend builds the page

Note - This use case is specified for a competitor consumer, if the
user is a simple consumer then the visualization will not
include points and leaderboards.

Figure 16: Sequence diagram Use Case 2.2.

Use Case 2.3: Implementing Water Saving Action

Use Case 2.3 Implementing Water Saving Action

Goal in Context The competitor submits a water saving action to the platform

Precondition The competitor is logged to the platform

Success End
Condition

The water saving action is correctly saved into the SmartH2O DB

SmartH2O-Platform Architecture and Design Page 27 D6.2 Version3.2

Failed End
Condition

--

Primary actors Competitor, GamificationEngine

Secondary Actors ESB, SmartH2ODB

Steps - The competitor submits a water saving action to the
Gamification Engine

- The Gamification Engine add the points to the total points of
the user

- The Gamification Engine notifies the ESB that the competitor
has submitted a water saving action

Note - The Gamification Engine will forward to the ESB only water
saving actions, all the other actions (e.g. add a comment,
read a tip) will be saved only locally to the GE DB.

Figure 17: Sequence Diagram Use Case 2.3.

Use Case 2.4: Inviting Family Member

Use Case 2.4 Inviting Family Member

Goal in Context The HouseHolder invites another member of the family to join the
platform

Precondition The HouseHolder is logged to the platform

Success End
Condition

The platform sends an invitation to the family member

Failed End
Condition

The specified email does not exists, the HouseHolder is notified

Primary actors HouseHolder, GamificationEngine

Secondary Actors ESB, SmartH2ODB

SmartH2O-Platform Architecture and Design Page 28 D6.2 Version3.2

Steps - The HouseHolder requests the invitation page
- The HouseHolder fills the registration page specifying the

other member role and email
- The GamificationEngine sends a notification to the ESB with

the new role and email
- The ESB saves the new member in the SmartH2ODB and

sends an invitation via email to the new member

Note

Figure 18: Sequence diagram Use Case 2.4.

Use Case 2.5: Setting action types

Use Case 2.5 Setting action types

Goal in Context The GE Content and Rules Editor configures a new type of action

Precondition The GE Content and Rules Editor is logged to the platform, a
Gamified application exists.

Success End
Condition

A new action type or reward type is inserted into the system

Failed End
Condition

No action type or reward type is inserted into the system

Primary actors GE Content and Rules Editor, GamificationEngine

Secondary Actors

Steps - The GE Content and Rules Editor submits a configuration for
a new action (including: name, score, participation,
reputation, repeatable, timeElapsed, active)

- The Gamification Engine saves the action

SmartH2O-Platform Architecture and Design Page 29 D6.2 Version3.2

Note

Figure 19: Sequence Diagram Use Case 2.5.

3.4.2 Component Interfaces Specification

Retrieve the list of available Actions

In order to get available actions for a specific gamified application the Get Action web service
is available. The service requires the name of the gamified application as a mandatory
parameter.

The endpoint is:
{webappUrl}/UserActivityCreditWebServiceREST/GetActions/getActions.do

A sample of JSON response is:

{
 "actions": [
 {
 "gamifiedApplication": "Energy Portal",
 "actionName": "Do energy saver quiz",
 "actionID": 4
 },
 {
 "gamifiedApplication": "Energy Portal",
 "actionName": "Login",
 "actionID": 1
 }
]
}

Get the user credits

In order to get the user credits obtained by interacting with the game, it is required to
specify the user email as parameter of the REST web service.

Endpoint

SmartH2O-Platform Architecture and Design Page 30 D6.2 Version3.2

{webappUrl}/UserActivityCreditWebServiceREST/GetUserCredits/getUserCredits.do?userEm
ail= xxx@yyy.com

Response
{
 "userCredits": {
 "userEmail": "xxx @yyy.com",
 "totalCredit": 3400,
 "creditsSpent": 0,
 "creditsAvailable": 3400
 }
}

Get the rewards

To get the rewards that can be redeemed by the user, it is also required to specify the user
email as a parameter of the web service.

Endpoint
{webappUrl}/UserActivityCreditWebServiceREST/GetUserRewards/
getUserRewards.do?userEmail= xxx@yyy.com

Response
 {
 "rewards": [
 {
 "rewardName": "CouponDiscount",
 “rewardID”: 1,
 “neededPoints”: 1000,
 “userEmail”: “xxx@yyy.com”
 }
]
}

Post a new rewards

To post a new reward that can be redeemed by the user, it is also required to specify the
user email as a parameter of the web service.

In order to register a new reward in the gamification platform, the Post a new reward web
service is available. The request is a JSON array with the following parameters:

- RewardName [MANDATORY]
- neededPoints [MANDATORY]

Endpoint

{webappUrl}/UserActivityCreditWebServiceREST/PostUserRewards/postUserRewards.do

Assign Actions To User

SmartH2O-Platform Architecture and Design Page 31 D6.2 Version3.2

In order to register the user action in the gamification platform, the Assign Actions To User
web service is available. The request is a JSON array with the following parameters:

- email: the email of the user to assign the action [MANDATORY]
- time: the timestamp of the request in Unix Timestamp format [MANDATORY]
- area: the name of the gamified application [MANDATORY]
- name: the name of the action [MANDATORY]
- description: the description of the action [MANDATORY]
- tag: additional parameter for managing non-repeatable action [NOT MANDATORY]
- link: additional parameter for managing non-repeatable action [NOT MANDATORY]
- executor: additional parameter for managing non-repeatable action [NOT

MANDATORY]
- objectkey: additional parameter for managing non-repeatable action [NOT

MANDATORY]

Input
[
 {
 "email": "xxx@yyy.com",
 "time": 1407307785347,
 "area": "Energy Portal",
 "name": "Login",
 "description": "Login",
 "tag": " ",
 "link": " ",
 "executor": " "
 }
]

Endpoint
{webappUrl}/UserActivityCreditWebServiceREST/AssignActionsToUsers/assignActionsToUs
ers.do

Redeem User Reward

In order to register the user reward in the gamification platform the Redeem User Reward
we service is available. The request is a JSON array with the following parameters:

• idReward: the id of the reward to redeem [MANDATORY]
• userEmail: the email of the user that redeems the reward [MANDATORY]

Input
{"idReward":1,"userEmail":" xxx@yyy.com "}

Endpoint
{webappUrl}/
UserActivityCreditWebServiceREST/RedeemUserReward/redeemUserReward.do

User Registration

To push user registration data about a new user in the Gamification Engine the User
Registration web service will be used.
The request is a JSON array with the following parameters:

SmartH2O-Platform Architecture and Design Page 32 D6.2 Version3.2

• birthdate: the birthdate of the user in UNIX timestamp format
• username
• password
• email
• firstname
• lastname
• city
• country
• publicprofile: boolean value to indicate if the user is active or not in the community
• internal: boolean value to indicate if the user in an internal user of the community
• isocode: language isocode (used to manage international community)
• geoarea
• photoname: the name of the photo of the user
• photocode: the photo of the user in Base64 format

Input

[{"birthdate":1407276000000,"username":"markross","password":"markross","email":"mark.ro
ss@e e.com","firstname":"Mark","lastname":"Ross","city":"London ","country":"United
Kingdom","publicprofile":true,"internal":false,"isocode":"en","geoarea":"Europe"}]

Endpoint

{webappUrl}/UserRegistrationWebServiceREST/UserRegistration/userRegistration.do

User update

To push the update user data to the gamification platform the User update web service will
be used.

The JSON array for the request is composed by the following parameters:
- birthdate: the birthdate of the user in UNIX timestamp format
- username
- password
- email [MANDATORY]
- firstname
- lastname
- city
- country
- publicprofile: boolean value to indicate if the user is active or not in the community
- internal: boolean value to indicate if the user in an internal user of the community
- isocode: language isocode (used to manage international community)
- geoarea
- photoname: the name of the photo of the user
- photocode: the photo of the user in Base64 format

Input

[{"birthdate":1407276000000,"username":"markross","password":"markross","email":"mark.ro
ss@e e.com","firstname":"Mark","lastname":"Ross","city":"London ","country":"United
Kingdom","publicprofile":true,"internal":false,"isocode":"en","geoarea":"Europe"}]

Endpoint

{webappUrl}/UserRegistrationWebServiceREST/UserUpdate/userUpdate.do

SmartH2O-Platform Architecture and Design Page 33 D6.2 Version3.2

3.5 Games Platform

As explained in D4.1, First social game and implicit user information techniques, the
introduction of a platform for handling Games in the SmartH2O project derives from the need
of being able to attract the interests of users which are not strictly linked with water utilities
while being able to run even as a standalone component. Different game design approaches
and instantiations are being investigated; nonetheless, they should all rely on an
infrastructure that provides features and data collection common to all of them.
This is the role of the Games Platform, a central component illustrated in Figure 20, which
handles the communication with the main SmartH2O platform and takes care of managing
users’ registration, profiling them, orchestrating and keeping track of game instances and the
gameplay sessions of the players. The points and the achievement collected in the digital
games should be transferred towards the Gamification Engine, to create a tied link between
the two approaches for engaging the users. For these reasons, a dedicated database takes
care of storing the users and their details, gameplay session’s data, point and achievements
obtained within the games platform.

Figure 20: The Game Platform component diagram.

At the time of writing, the component should support two different game instances: a Quiz
Game, called Drop!TheQuestion, that is the digital extension of the Drop! board game and
is used to collect behavioural data from the users; a single player game, called DropOn! that
is used to promote sustainable behaviours and as an educational game. Both of them are
described in D4.1. For the definition of new content for the proposed games (e.g. badges and
achievements for the single player mode), the games platform offers also a Content editor UI
that allows non-technical users to enrich the content offered by the applications without the
need of modifying the underlying architecture or create new builds.

SmartH2O-Platform Architecture and Design Page 34 D6.2 Version3.2

Component Name Games Platform

Leader MOONSUB

Partners POLIMI

Goal The component manages the integration with all the games and it
talks with the GamificationEngine to save actions and points

User use cases 11.1 Use case: Games Platform signup
11.2 Use case: Playing a standard mobile game
11.3 Use case: Playing the card game and its digital game
extension
11.4 Use case: Gaining power-ups based on the Gamification
Engine credits
11.5 Use case: Connecting player profile to the Gamification
Engine
11.6 Use case: Setting content of game questions
11.7 Use case: Setting content of questions for a given utility
game

Provided Interfaces This component is a mobile application written using the framework
Unity.

Dependencies /
Required Interfaces

The component requires the implementation of the following
interfaces:

- [GET]: GetUserRewards
- [POST]signup: pushes a registration to the SmartH2O DB
- [POST]: RedeemUserReward
- [POST]userStatus (userID, online | offline): notify to the

SmartH2O DB the change of status of a user
- [POST]unsubscribe: removes a registration from the

SmartH2O DB
- [POST]addUserProfile: saves user profile information like:

family members, house configuration, appliances etc..
- [POST]updateUserProfile: updates user profile information

like: family members, house configuration, appliances etc..
- [POST]connectGEProfile: connect the gamer profile to the

associated GE profile
- [POST]AssignActionsToUsers(userid, action): forwards an

action to the GamificationEngine

3.5.1 Main Use Cases

Use Case 3.1: Application Registration

Use Case 3.1 Application Registration

Goal in Context The player registers the installed application into the Games Portal

Precondition The player installed the application on a device

Success End
Condition

The player is correctly registered into the Games Portal

SmartH2O-Platform Architecture and Design Page 35 D6.2 Version3.2

Failed End
Condition

The email already exists, the player is notified

Primary actors Player, GamesManager

Secondary Actors ESB, Authentication Gateway

Steps - The player asks to register to the platform specifying email
and name

- The Games Manager verifies if the email has been used on
another registration invoking the Authentication Gateway

- If the email does not exists then the Games Manager invoke
the Authentication Gateway to save the new user

- Otherwise it notifies the error to the player

Note

Figure 21: Sequence Diagram Use Case 3.1.

Use Case 3.2: Game Results

Use Case 3.2 Game Results

Goal in Context The player ends a game and the platform forward the results to the
GamificationEngine

Precondition The player is logged to the platform, the player played one of the
games in the platform

Success End
Condition

The gamer gains points on the Gamification Engine

Failed End
Condition

--

SmartH2O-Platform Architecture and Design Page 36 D6.2 Version3.2

Primary actors Player, GamesPlatform

Secondary Actors ESB, GamificationEngine

Steps - The gamer ends a game
- The game calculates the results and send it to the ESB
- The ESB forwards the result to the GamificationEngine

Note

Figure 22: Sequence Diagram Use Case 3.2

Use Case 3.3: Submit a new Question

Use Case 3.3 Submit a new Question

Goal in Context Add a new Question to the set of questions used in the Drop quiz
game

Precondition --

Success End
Condition

The new question is saved and available for next games

Failed End
Condition

--

Primary actors Games Platform CE, GamesPlatform

Secondary Actors --

Steps - The Games Platform CE accesses the Games Platform CE
UI and submits a new Question and a set of Answers
(including the correct one)

- The Games Platform saves the question into the DB

Note The list of fields for Question and Answer are specified in 2.3

SmartH2O-Platform Architecture and Design Page 37 D6.2 Version3.2

Figure 23: Sequence Diagram Use Case 3.3

3.6 Enterprise Service Bus (ESB)

This component is a service oriented middleware layer that supports the loose coupling of the
SmartH2O components; it permits the publication of their interfaces (Application
Programming Interfaces, APIs) and the synchronous and asynchronous communication
among components. The goal of the ESB is to decouple the heterogeneous components of
the SmartH2O platform as much as possible, to support the extension with new services and
functions and the rapid adaptation of the platform to new contexts (e.g., other utility
companies with different IT standards and information systems).

Figure 22: Enterprise Service Bus component diagram.

SmartH2O-Platform Architecture and Design Page 38 D6.2 Version3.2

Component Name ESB

Leader SETMOB

Partners POLIMI, SUPSI

Goal Provide loose coupling of the SmartH2O Components

User use cases The use cases of ESB are the summary of Use Cases that involves
component interaction. See summary table below.

Provided Interfaces Interfaces provided by ESB are the summary of SmartH2O required
interfaces that need to interact with other components. See summary
table below.

Dependencies /
Required Interfaces

Interfaces required by ESB are the summary of SmartH2O provided
interfaces that service requests from other components. See
summary table below.

Table 1 summarizes Use Cases where the ESB component is involved. Provided interfaces
and interfaces to be implemented (Required interfaces) are detailed for each use case.
This summary will allow identification of common requirements among components and will
be the basis in defining the minimum required set of interfaces to be provided and
implemented interfaces.

Table 1: Summary of Use Cases pertaining to ESB.

Use Case Client
component

Provided
interfaces

Service
component

Required
interfaces

userSignup UtilityPortal exists(mail) Authentication
Gateway

exists(mail)

 UtilityPortal signup(mail,
name, address,
UtilityCode)

Authentication
Gateway

save(mail,
name, address,
UtilityCode)

 UtilityPortal verify(UtilityCode)

visualExplora
tionUtilityData

UtilityPortal getBill(userId) Pricing Engine getBill(userId)

 UtilityPortal getAlerts(userId) SmartH2ODB getAlerts(userId)

 UtilityPortal getTips(userId) SmartH2ODB getTips(userId)

 UtilityPortal waterConsumption
StatisticsByUserId
(userId)

SmartH2ODB getConsumption
(userId)

 Utility Portal getNeighborhood(
userId)

SmartH2ODB getNeighborhoo
d(userId)

Gamification
Engine
SignUp

GE BackEnd GESignUp(userId) SmartH2ODB save(userId)

Visual
Exploration
Gamified
Utility Data

GE BackEnd getPoints(userId)

 GE BackEnd getBadges(userId)

SmartH2O-Platform Architecture and Design Page 39 D6.2 Version3.2

 GE BackEnd getLeaderBoard(u
serId)

 GE BackEnd getBill(userId) Pricing Engine getBill(userId)

 GE BackEnd getAlerts(userId) SmartH2ODB getAlerts(userId)

 GE BackEnd getTips(userId) SmartH2ODB getTips(userId)

 GE BackEnd waterConsumption
StatisticsByUserId
(userId)

SmartH2ODB getConsumption
(userId)

Implementing
Water Saving
Action

GE BackEnd forward(userId)

Inviting
Family
Member

UtilityPortal invite(role, email) SmartH2ODB save(consumer)

 Consumer InvitationEmail()

User
Registration

Games
Manager

exists(email) Authentication
Gateway

exists(email)

 Games
Manager

register(email,
name)

Authentication
Gateway

save(email,
name)

Game
Results

Games
Platform

sendResults(res,
userId)

Gamification
Engine

assignActionsTo
Users(userId,act
ions, points)

Transfer of
incoming
user
authenticatio
n

Portal
Exchange
Manager

authenticateUser(
userId)

Authentication
Gateway

authenticateUse
r(userId)

Transfer of
outgoing
authenticatio
n

Authentication
Gateway

authenticateOutgo
ingUser(userId)

PortalExchang
eManager

authenticateUse
r(userId)

Transfer of
user profile –
incoming

 PortalExchang
eManager

getUserProfile(u
serId)

Transfer of
user profile –
outgoing

PortalExchang
eManager

getUserProfile SmartH2ODB getUserProfile(u
serId)

Visualizing
aggregate
household
consumption
information
by
geolocation

AdminWaterUt
ility

getWaterConsump
tion(geolocation)

SmartH2ODB getWaterConsu
mption(geolocati
on)

Identifying
customer
segments

AdminWaterUt
ility

saveSegment(attri
butes)

SmartH2ODB saveSegment(at
tributes)

Setting
actions and

AdminWaterUt
ility

setActionRewardF
orSegment

SmartH2O getUsersForSeg
ment

SmartH2O-Platform Architecture and Design Page 40 D6.2 Version3.2

rewards
types for
specific user
segments/gro
ups

 SmartH2O setActionsRewa
rdsForUsers

Predicting
customer
segment
consumption
behavior on
past
information

AdminWaterUt
ility

getConsumptionSi
mulationPastInfo

ABM getConsumption
SimulationPastI
nfo

Predicting
customer
segment
consumption
behavior
based on
incentive
response

AdminWaterUt
ility

getConsumtionSi
mulationIncentive

ABM getConsumtionS
imulationIncentiv
e

Predicting
customer
response to
pricing
scheme

AdminWaterUt
ility

getConsumptionSi
mulationPricing

ABM getConsumption
SimulationPricin
g

3.6.1 Component Interfaces Specification

--

3.7 Smart Meter Data Manager

The Smart Meter Data Management component (from now on, SMDM) has the role to
acquire, process and consolidate water consumption data automatically provided by smart
meters. The sources of the water consumption metering data are the hardware systems and
the software platforms of the water utility. The data is provided by FTP/SFTP as bulk files
(CSV, XML) containing periodical measurements on hourly, daily, weekly, monthly, etc.
bases.

The increased frequency of the water counter acquisition and processing is a key factor in
delivering accurate data for assisting on correct decision making. As a consequence, the
SMDM component has to provide a scalable method for processing and consolidating
increasing amounts of consumption data flowing from an increasing number of water
counters. In this sense, the critical business requirement for the SMDM component is to
implement a scalable architecture beyond traditional RDBMSs. This is accomplished
by implementing specific BigData processing techniques such as parallel processing,
incremental MapReduce computations, virtualization of the storage for using cloud
computation in order to achieve data consolidation while obtaining a reduced response time.

SmartH2O-Platform Architecture and Design Page 41 D6.2 Version3.2

Component Name Smart Meter Data Manager

Leader SETMOB

Partners --

Goal Collecting consumption data via smart meters

User use cases 8.2 Collecting consumption data

Provided Interfaces This component is a batch process performing an extract, transform,
load (ETL) suite of jobs for pulling the water consumption data from
data files and consolidating in the SmartH2O platform database.

Dependencies /
Required Interfaces

The component requires the implementation of the following jobs:
- FileValidation: checks if the file fulfils the label and size

related criteria
- StructureValidation: checks if the data file has the structure

previously agreed with the water utility
- DataProcessing: launching the extraction process, preparing

the record set for persistence, loading the record set to the
database

3.7.1 Main Use Cases

Use Case 5.2: Collecting consumption data

Use Case 5.2 Collecting consumption data

Goal in Context Collecting consumption data via smart meters

Precondition Water consumption of customer household is metered (smart
meters) for the reference interval of time

Success End
Condition

The system stores in the SmartH2O platform database the
consumption data for a reference interval of time

Failed End
Condition

The system is not able to store in the SmartH2O platform database
the consumption data for a reference interval of time despite the
process has been correctly initiated by the water utility

Primary actors Smart Meter Data Manager

Secondary Actors SmartMetered user, smart meter

SmartH2O-Platform Architecture and Design Page 42 D6.2 Version3.2

Steps - The smart water meter measures the customer’s water
consumption. The consumption data is collected by the
water utility automatically (smart meter). The water utility
creates a file with water consumption data in a pre-agreed
format

- The water consumption data is transmitted to the SmartH2O
platform where it is received, validated, processed and
stored

- The result of processing the collected consumption data by
the SmartH2O platform is saved in a Log file that can be
visualised online by the water utility or by the platform
administrators

Note This use case is triggered by the water utility uploading to the
SmartH2O server via SFTP the file containing the consumption data
for a reference interval of time

Figure 24: Sequence Diagram Use Case 5.2.

3.8 Portal Data Exchange Manager

This component deals with the data exchange communication that occurs “behind the
scenes” between the SmartH2O platform and the third party applications already supporting
the interaction with the various types of users.
There are several use cases of data exchange implemented by this component:

- Transfer of user authentication. Single Sign-On, both for Consumer Users and Admin
Users. Partner portals must be first registered for trust relationship.

- Transfer of user profile. This flow transfers user profile from a source portal to a
destination portal. As an internal rule, each portal might transfer user profile only if
user previously agreed on such a transfer

To ensure a smooth and complete transfer of user profile, it is recommended that each Water
utility portal implement a standard of user profile. Else, a mapping of user attributes between
different portals must be implemented by this component.

Component Name Portal Data Exchange Manager

SmartH2O-Platform Architecture and Design Page 43 D6.2 Version3.2

Leader SETMOB

Partners --

Goal Manages transfer of information between SmartH2O and similar
portals of Water Utility

User use cases - 6.1 Transfer of incoming user authentication
- 6.2 Transfer of outgoing user authentication
- 6.3 Transfer of user profile incoming
- 6.4 Transfer of user profile outgoing

Provided Interfaces - [GET] authenticateIncomingUser(portalId, partnerPortalKey,
userId). Authenticate incoming user against SmartH2O
platform and provide authentication token to partner portal

- [GET]
getUserProfile(portalId,partnerPortalKey,authenticationKey,
userId) Returns SmartH2O user profile

Dependencies /
Required Interfaces

We assume that the Partner portal will implement following interface:
- [GET] authenticateIncomingUser(portalId,smartH2OKey,

userId). Expected to retrieve authentication token from
partner portal

- [GET] getUserProfile(portalId,smartH2OKey,
authenticationKey,userId). Returns Partner portal user profile

3.8.1 Main Use Cases

Use Case 6.1: Transfer of incoming user authentication

Use Case 6.1 Transfer of incoming user authentication

Goal in Context Provide Single Sign-On service for incoming users from registered
portals

Precondition Partner portal was previously registered in SmartH2O

Success End
Condition

If existing and active user in SmartH2O, incoming user is
authenticated
If user not exist in SmartH2O, incoming user is not authenticated

Failed End
Condition

Existing active user is not authenticated

Primary actors PartnerPortal, Portal Exchange Manager

Secondary Actors ESB, AuthenticationGateway

Steps - Partner portal send an authentication request for its user
- Partner Portal Exchange Manager check user against

AuthenticationGateway
- If User exists and is active, authentication key for user is

returned.
- If User does exist or is not active, an notice message is

returned

SmartH2O-Platform Architecture and Design Page 44 D6.2 Version3.2

Note

Figure 25: Sequence Diagram Use Case 6.1.

Use Case 6.2: Transfer of outgoing user authentication

Use Case 6.2 Transfer of outgoing user authentication

Goal in Context Provide Single Sign-On service for outgoing users of SmartH2O

Precondition Partner portal was previously registered in SmartH2O

Success End
Condition

If existing and active user in PartnerPortal, outgoing user is
authenticated
If user does not exist in PartnerPortal, outgoing user is not
authenticated

Failed End
Condition

Existing active user is not authenticated in PartnerPortal

Primary actors Portal Exchange Manager

Secondary Actors ESB, AuthenticationGateway

SmartH2O-Platform Architecture and Design Page 45 D6.2 Version3.2

Steps - AuthenticationGateway sends an authentication request a
user against a PartnerPortal

- Partner Portal Exchange Manager verifies user against
PartnerPortal

- If User exists and is active in PartnerPortal, authentication
key for user is returned.

- If User does exist or is not active in PartnerPortal, an notice
message is returned

Note

Figure 26: Sequence Diagram Use Case 6.2.

Use Case 6.3: Transfer of user profile – incoming

Use Case 6.3 Transfer of user profile - incoming

Goal in Context Transfer of user profile from partner portal to SmartH2O DB

Precondition Partner portal was previously registered in SmartH2O.
Mapping of user profiles was previously configured in SmartH2O

Success End
Condition

Incoming user profile is saved to database

Failed End
Condition

Incoming user profile is not saved to database

SmartH2O-Platform Architecture and Design Page 46 D6.2 Version3.2

Primary actors PartnerPortal, Portal Exchange Manager

Secondary Actors ESB, SmartH2ODB

Steps - Partner Exchange Manager sends request for user profile to
partner portal

- Partner Portal sends user profile
- Partner Exchange Manager saves user profile in SmartH2O

database

Note

Figure 27: Sequence Diagram Use Case 6.3.

Use Case 6.4: Transfer of user profile – outgoing

Use Case 6.4 Transfer of user profile - outgoing

Goal in Context Transfer of user profile from SmartH2O to partner portal

Precondition Partner portal was previously registered in SmartH2O

Success End
Condition

Outgoing user profile is saved to partner portal database

Failed End
Condition

Outgoing user profile is not saved to database

Primary actors PartnerPortal, Portal Exchange Manager

Secondary Actors ESB, SmartH2O DB

SmartH2O-Platform Architecture and Design Page 47 D6.2 Version3.2

Steps - PartnerPortal sends a profile transfer request to Portal
Exchange Manager

- Portal Exchange Manager retrieves user profile from
SmartH2O

- Portal Exchange Manager sends user profile to Partner
Portal

- Partner Portal saves user profile to its database

Note

Figure 28: Sequence Diagram Use Case 6.4.

3.8.2 Component Interfaces Specification

[GET] authenticateIncomingUser(portalId, partnerPortalKey, userId).
Authenticate incoming user against SmartH2O platform and provide authentication token to
partner portal.
Parameters:

- portalId. ID of portal that requests authentication. Portal must be enlisted as Partner
Portal in SmartH2O DB

- partnerPortalKey. Key / token. Identification key / token that ensures identity of client
application. This key / token must be exist in Partner Portal record in SmartH2ODB
and must be provided to Partner Portal for requests against SmartH2O components

- userId. Id of user that requests authentication

The endpoint is:
{webappUrl}/PortalExchangeManagetWebServiceREST/authenticateIncomingUser/
authenticateIncommingUser.do

SmartH2O-Platform Architecture and Design Page 48 D6.2 Version3.2

[GET] getUserProfile(portalId,partnerPortalKey,authenticationKey, userId) Returns
SmartH2O user profile

A sample of JSON response for a successful authentication is:

{
 "authResult":
 {
 "authKey": "FFD321324.m432dssadeqwiopi432",
 "authenticated": "Yes"
 }
}

A sample JSON response for a failed authentication is:

{
 “authResult”:
 {
 “authenticated”: “No”,
 “reason”: “user does not exist”
 }
}

[GET] getUserProfile(portalId,partnerPortalKey,authenticationKey, userId)
Returns SmartH2O user profile
Parameters:

- portalId. ID of portal that requests authentication. Portal must be enlisted as Partner
Portal in SmartH2O DB

- partnerPortalKey. Key / token. Identification key / token that ensures identity of
client.application This key / token must be exist in Partner Portal record in
SmartH2ODB and must be provided to Partner Portal for requests against SmartH2O
components

- userId. Id of user whose profile need to be retrieved

The endpoint is:
{webappUrl}/PortalExchangeManagetWebServiceREST/getUserProfile/getUserProfile.do

A sample of JSON response for a successful retrieval of user profile is:

{

“userId”:1220211102,
“sourceSystem”:”SmartH2O”,
“result”:
{
 “status”:“Ok”,
 “reason”:”success”
},
“profileData”:
{

SmartH2O-Platform Architecture and Design Page 49 D6.2 Version3.2

 “name”:”John”,
 “surname”:”Doe”,
 “dateofbirth”:”1982-09-11”,
 “gender”: “male”,
 …
}

}

A sample of JSON response for a failed retrieval of user profile is:

{

“userId”:1220211102,
“sourceSystem”:”SmartH2O”,
“result”:
{
 “status”:“nOk”,
 “reason”:”error message”
}

}

3.9 Water Utility Admin Portal

Figure 29 shows the essential component diagram of the Water Utility Admin Portal.

Figure 29: Water Utility Admin Portal Component Diagram.

The portal offers services to the Consumption Supervisor and the Consumer Portal Content
Editor, both administrative users of the water utility company. It is organised in three main
sub-components: a Consumption Monitor, which allows the Consumption Supervisor to check
the consumption data of specific consumers; the Customer Consumption simulator, which
allows the Consumption Supervisor to run simulation based on specific simulated incentive
campaigns and on the services offered by the Agent-Based Modelling component; and the
Utility content editor Portal, which permits the Content Editor to provide content for feeding
the Consumer Portal.

SmartH2O-Platform Architecture and Design Page 50 D6.2 Version3.2

Component
Name

Water Utility Admin Portal

Leader POLIMI

Partners SETMOB

Goals The component manages the monitoring and simulation of aggregate
water consumption

User use
cases

7.1 Visualizing aggregate household consumption information by geo-
location
7.2 Identifying customer segments
7.3 Setting action and reward types for specific user segments/groups
7.4 Predicting customer segment consumption behavior
7.5 Predicting behavior on incentive response
7.6 Predicting customer response to pricing scheme
7.7 Create content (news, tips for water consumption optimization,…)

Provided
Interfaces

This component is a web application, which integrates inputs from external
sources.

Dependencies
/
Required
Interfaces

The component requires the implementation of the following interfaces:
- [GET]getGeoLocations(): retrieves all geolocation divisions of

Water Utility
- [GET]getUserAttributes(): retrieves all user attributes available for

consumers of Water Utility
- [GET]getSegments(): retrieves all consumer segments, already

defined for a Water Utility
- [GET]getWaterConsumption(geoLocations, segments, period):

retrieves actual water consumption data for specified
geolocations, segments, for a specified period for a Water Utility.

- [GET]getWaterConsumptionSimulationPastInfo(geoLocations,
segments, period): retrieves simulation of user consumption based
on past consumption info.

- [GET]getWaterConsumptionSimulationIncentive(geoLocations,
segments, period, incentive): retrieves simulation of user
consumption based on incentive/reward.

- [GET]getWaterConsumptionSimulationPricing(geoLocations,
segments, period, pricingScheme): retrieves simulation of user
consumption based on pricing scheme.

- [GET]getActionRewards(segment): retrieves existing game actions
and associated rewards for specified consumer segment

- [GET]getSimulationIncentiveRewards(): retrieves existing
incentive/rewards that were implemented by consumption
simulation engines (ABM)

- [GET]getSimulationPricingSchemes(): retrieves a list existing
pricing schemes that were implemented by the consumption
simulation engines (ABM)

- [POST]saveSegment(userAttributes): creates or updates a
segment based on a collection of user attributes for Water Utility

- [POST]saveActionRewards(segments, actions, reward): creates
game actions and associated reward for specified consumer
segments

SmartH2O-Platform Architecture and Design Page 51 D6.2 Version3.2

3.9.1 Main Use Cases

Use Case 7.1 Visualizing aggregate household consumption information by
geo-location

Goal in Context Identifying e.g. leakage or consumption metrics of customers to take
appropriate action (e.g. adjust pumping, fix leaks, adapt pricing
schemes)

Precondition Customer households are metered; Household consumption data is
available

Success End
Condition

Household consumption data is visualized.

Failed End
Condition

Household consumption data is not visualized.

Primary actors ConsumptionSupervisor

Secondary Actors ESB, SmartH2ODB

Steps - User selects specific geographic region / district / household
- The system visualizes the aggregated metered water

consumption data of a specific geographic region / district /
household

- The user can interact with the visualization by choosing
different zoom levels of the information (hourly, daily,
monthly)

- The user can compare average to a set of available other
aggregate averages (e.g. municipality, district)

- If data available, the user can compare the consumption with
amount of pumped water to identify potential leakages

Note

SmartH2O-Platform Architecture and Design Page 52 D6.2 Version3.2

Figure 30: Sequence Diagram Use Case 7.1.

Use Case 7.2 Identifying customer segments

Goal in Context Identifying specific customer segments to provide targeted incentives
and personalized feedback for water saving.

Precondition Customer households have provided household and consumption
information. Households were metered.

Success End
Condition

The identified customer segments are validated based on
observational data.

Failed End
Condition

The observational data does not confirm the identified customer
segments.
The identified customer segments are not fine-grained enough.

Primary actors Consumption Supervisor

Secondary Actors ESB, SmartH2ODB

Steps - System displays the behavioural customer and household
attributes.

- Based on this information, the user can identify and save a
specific customer segment by selecting a subset of
attributes.

- System saves customer segments.

Note

SmartH2O-Platform Architecture and Design Page 53 D6.2 Version3.2

Figure 31: Sequence diagram Use Case 7.2

Use Case 7.3 Setting actions and reward types for specific user segments/groups

Goal in Context Provide personalized actions and rewards based on specific
customer segments.

Precondition User profiles and segments are available in the system.

Success End
Condition

Different actions and rewards are linked to each user segment.

Failed End
Condition

The system is not able to propose different actions and rewards for
each user segment.

Primary actors Consumption Supervisor

Secondary Actors ESB, SmartH2ODB, Gamification Engine

Steps User selects segment
User defines reward/incentive
User selects actions to be performed to get the reward/incentive
User saves the actions and rewards for specified segment

Note

SmartH2O-Platform Architecture and Design Page 54 D6.2 Version3.2

Figure 32: Sequence diagram Use Case 7.3.

Use Case 7.4 Predicting customer segment consumption behavior on past
information

Goal in Context Water consumption prediction by customer segment based on past
information and customer segment defined from information
available from the app.

Precondition Customer households have provided household and consumption
information. Households were metered.

Success End
Condition

The model is able to accurately predict customer segment
consumption behaviour.

Failed End
Condition

The model is not able to accurately predict customer segment
consumption behaviour.

Primary actors Consumption Supervisor

Secondary Actors ESB, ABM, SmartH2ODB

Steps Users selects simulation type= based on past information
User selects segment, and future simulation period
Based on behaviour model, system predicts future consumption
behaviour based on past information

Note

SmartH2O-Platform Architecture and Design Page 55 D6.2 Version3.2

Figure 33: Sequence diagram Use Case 7.4.

Use Case 7.5 Predicting customer segment consumption behavior on incentive
response

Goal in Context Prediction of customer water consumption response to specific
reward / incentive scheme based on the estimated model of
customer response to rewards/incentive schemes.

Precondition Customer households have provided household and consumption
information. Households were metered. Relevant and feasible
rewards have been identified. Customer response model has been
estimated.

Success End
Condition

The model is able to accurately predict customer consumption
response to reward/incentive scheme.

Failed End
Condition

The model is not able to accurately predict customer consumption
response to reward/incentive scheme.

Primary actors Consumption Supervisor

Secondary Actors ESB, Gamification Engine, ABM

Steps Users selects simulation type = based on reward/incentive
User selects segment, and future simulation period
User selects reward/incentive used for simulation
Based on behaviour model, system predicts future consumption
behaviour based on reward/incentive response

Note

SmartH2O-Platform Architecture and Design Page 56 D6.2 Version3.2

Figure 34: Sequence diagram Use Case 7.5.

Use Case 7.6 Predicting customer response to pricing scheme

Goal in Context Prediction of customer water consumption response to specific
pricing schemes such as blocking rates.

Precondition Customer households have provided household and consumption
information. Households were metered.

Success End
Condition

The model is able to accurately predict customer consumption
response to pricing scheme.

Failed End
Condition

The model is not able to accurately predict customer consumption
response to pricing scheme.

Primary actors Consumption Supervisor

Secondary Actors ESB, SmartH2ODB, ABM

Steps Users selects simulation type = based on pricing schemes
User selects segment and future simulation period
User selects pricing scheme used for simulation
Based on behaviour model, system predicts future consumption
behaviour based on pricing scheme response

Note

SmartH2O-Platform Architecture and Design Page 57 D6.2 Version3.2

Figure 35: Sequence diagram UseCase 7.6.

3.10 Authentication Gateway

This component role is to centralize and consolidate the user registration data within the
SmartH2O platform database, also for the users registered in the external components, which
may use their own local user databases. The involved components are:

- Water Utility Customer Portal
- Gamification Engine
- Games Portal
- Water Utility Admin Portal

Also, this component provides a unique point for authentication to all the users primarily
registered at a component level, in order to login to other components by using the original
set of credentials without the need to perform another registration.

SmartH2O-Platform Architecture and Design Page 58 D6.2 Version3.2

Figure 36: Authentication Gateway component diagram.

Component Name Authentication Gateway

Leader SETMOB

Partners POLIMI

Goals Consolidates the user registration data within the SmartH2O platform
database. Provides a unique point for authentication to all the users
primarily registered at a component level, in order to login to other
components.

User use cases - Consolidates the user registration in the SmartH2O platform
database

- User authentication through Single Sign-On

Provided Interfaces - [POST]signUpToSmartH2ODB(userAttributes): creates a
user registration to the SmartH2O DB

- [POST]unsubscribeFromSmartH2ODB: remove a
registration from the SmartH2O DB

- [POST]updateUserProfileToSmartH2ODB: updates user
profile information like: family members, house configuration,
appliances etc.. to the SmartH2O DB

Dependencies /
Required Interfaces

 The component requires the implementation of the following
interfaces:

- [POST]delegateAuthentication: authenticates the user who is
passing the credentials

- [POST]delegationSignOff: signs off the user authenticated
through Single Sign On

3.10.1 Main Use Cases

Use Case 8.1: Consolidates the user registration in the SmartH2O platform database

SmartH2O-Platform Architecture and Design Page 59 D6.2 Version3.2

Use Case 8.1 Consolidates the user registration in the SmartH2O platform
database

Goal in Context Register in the central database the user that has been previously
registered in a component databases

Precondition The user has performed registration in a component database

Success End
Condition

The user is registered in the SmartH2O central database

Failed End
Condition

The component is not able to register the user in the SmartH2O
central database

Primary actors SmartH2O User Registration

Secondary Actors ESB, SmartH2ODB

Steps - The user performs registration in any component managing
its own user database

- The component calls the SmartH2O User Registration
- The user is registered in the SmartH2O database

Note This use case is triggered by any of the components performing their
own user registration:

- Water Utility Customer Portal
- Gamification Engine
- Games Portal
- Water Utility Admin Portal

Figure 37: Sequence diagram for Use Case 8.1.

Use Case 8.2: User authentication through Single Sign-On

Use Case 8.2 User authentication through Single Sign-On

SmartH2O-Platform Architecture and Design Page 60 D6.2 Version3.2

Goal in Context Allow an user authenticated in a component to access another
component where he has not directly performed registered through a
Single Sign-on mechanism

Precondition The is registered in the SmartH2O platform database

Success End
Condition

The user access a component where he has not directly performed
registration

Failed End
Condition

The user is not able to access a component where he has not
directly performed registration

Primary actors User, Single Sign-On Authentication Service

Secondary Actors ESB, Water Utility Customer Portal, Gamification Engine, Games
Portal, Water Utility Admin Portal

Steps - The user logs in to a component where he previously
performed direct registration

- The user request access to another component where he did
not previously accomplished a direct registration

- The user access the other component

Note

Figure 38: Sequence Diagram for Use Case 8.2.

3.11 Pricing Engine, Agent Based Modelling and Models of User
Behaviour

This section overviews the current understanding of the role and internal structure of the
Pricing Engine, Agent Based Modelling and Models of User Behaviour. The present
specification will be further detailed and refined as part of the technical progress of the work
in WP3 User Modelling, WP4 Saving water by social awareness, WP5 Saving water by
dynamic pricing.
The Pricing Engine offers services to both the Customer and the Consumption Supervisor,
who access it through dedicated user-interfaces. The Pricing Engine Backend manages the
dialogue of the two above mentioned user groups with the price modelling and simulation

SmartH2O-Platform Architecture and Design Page 61 D6.2 Version3.2

functionality offered by the Pricing Modelling Services. The resulting coarse organization of
the component is overviewed in Figure 39.

Figure 39: Pricing Engine Component Diagram.

The Agent Based Modelling component allows the water utility to simulate whole districts of
users, thus extrapolating user models at a larger scale. The agent based model includes
influence/mimicking mechanisms and social interaction among the consumers, and thus will
be employed by the water utility to understand how some user types (leaders/influencers) can
stimulate a behavioural change on other users.
It exploits the Models of User Behaviour component embodies models describing water
consumption behaviour of a single customer or a class of consumers. It internal coarse
organization is shown in Figure 40.
Through this component, the water utility can visualize the water consumption of each
customer at a fixture/appliance level, in order to identify consumption patterns and trends,
and thus identifying the most promising areas where conservation efforts may be polarized.
Furthermore, based on their behaviour, consumers are clustered into different classes, and
the water utility can foresee the consumer behaviour in front of exogenous variables
(climate), social awareness campaigns, social pressure, water restrictions, etc. For a
description of the algorithms exploited to model the user behaviour, see deliverable D3.2:
First user behaviour models.

Figure 40: Models of User Behaviour Component Diagram.

SmartH2O-Platform Architecture and Design Page 62 D6.2 Version3.2

4. Deployment Architecture

As detailed in the component architecture diagram, SmartH2O Platform is a heterogeneous
collection of components with different functionality that interact to each other to deliver the
proposed objectives. Each component by itself deliver a certain functionality but it also
requires general platform services like authentication, communication or data services.
Components also need data or computation from other component of the platform.

The major technical criterion for the selection of the platform architecture was to have a
Service Oriented Architecture (SOA). This requirement will ensure loose coupling and
isolation of logic of components. Being a current industry standard, SOA architecture will also
allow easy integration of Smart H2O platform with other existing platforms. SOA architecture
can also provide scalability, security and availability of the platform.

SOA architecture imposed that interaction between components and interaction between
components and the platform must be realized via an integration middleware component. The
most suitable integration component for SOA architecture was an Enterprise Service Bus
(ESB) component. This architecture pattern will also allow easy but solid integration of Water
Utility existing systems with SmartH2O Platform. For example an existing CRM system of
Water Utility can be easily plugged in to provide segmentation information of customers.

Figure 41- General integration platform architecture

SOA architecture will be implemented using open and standardized technologies and
frameworks like REST, HTTP(S), J2EE (Java Enterprise Edition), JBoss Fuse. Each
component will be also internally implemented by open source frameworks and languages,
industry proven technologies but in the context of the SmartH2O platform they will expose a
common interface of Web Services so that they can be integrated in the platform with the rest
of the components.

Most components contain an internal multi-tiered architecture relying on web-based J2EE
framework. That means that the client application will typically run in a web browser.

SmartH2O-Platform Architecture and Design Page 63 D6.2 Version3.2

Technical Implementation details of each component can be found in ANNEX2 - List of
technologies, frameworks and languages used.

Figure 42 - Component level multi-tiered architecture (from docs.oracle.com)

The choice of multi-tiered architecture will provide:

• scalability of Business Logic and Data tiers
• no client-side maintenance
• separation of development roles. User Interface development tasks are separated

from Business Logic development tasks. Development task separation allow
specialization and scalability of development resources

In the context of Water Utility oriented applications this choice of architecture and
technologies will deliver, among many other, these main benefits:

• interoperability. Easy and rapid adaptation of SmartH2O platform to customer
specifics. Each Water Utility provider is supposed to operate more management
systems that can be integrated in the Platform to provide enhanced Customer and
Water Usage data. Also they can be fed by Smart H2O with behavioural data and
consumption scenarios.

• scalability. Water Utility companies may handle huge amounts of data. Distribution
of computing, data access and storage and presentation operations allow efficient
resources allocation in such quantity that the Platform delivers required performance
level.

SmartH2O-Platform Architecture and Design Page 64 D6.2 Version3.2

4.1 Development Environment Deployment

The hardware infrastructure of the development and testing server is powered by a Dell
PowerEdge 6850 with 4 Intel Xeon dual core CPUs at 3.2 GHz, 32GB of DDR2 ECC RAM
and 1.5 TB of RAID storage. These resources are split by VMware ESXi 5.5 into 4 virtual
machines:

• CI - 4 vCPUs, 8GB RAM, 500GB storage
• SM - 8 vCPUs, 6GB RAM, 256GB storage
• SM1 - 4 vCPUs, 10GM RAM, 260GB storage
• SM2 - 2 vCPUs, 4GB RAM, 254GB storage
• AP - 4 vCPUs, 5GB R, 5- gb storage

The virtual machines have separate roles, as follows:
CI - continuous integration using Jenkins, development using WebRatio using VNC access,
SonarQube for code analysis, JBoss FUSE ESB, MySQL server with testing and production
data, Sonatype Nexus for repository management, Tomcat 6 for testing
All SM VMs come together to create a small Hadoop cluster that can process data in a
distributed, scalable and high availability fashion.

SM - Ambari for monitoring of the Hadoop system, YARN App Timeline Server, Ganglia
Server, MapReduce2 History Server, Nagios Server, YARN Resource Manager, HDFS
SNameNode, ZooKeeper Server, HDFS DataNode, Ganglia Monitoring, YARN
NodeManager

SM1 - HDFS NameNode, Oozie Server, ZooKeeper Server, Ganglia Monitoring, YARN
NodeManager, FTP Server for receiving XML files from SES, SMDMC Manager for managing
the processing flow of the data received from the water utility.

SM2 - HDFS DataNode, ZooKeeper Server, Ganglia Monitoring, YARN NodeManager

As for clients, all SM VMs have installed: HDFS Client, MapReduce2 Client, Oozie Client,
Pig, Sqoop, Tez Client, YARN Client, ZooKeeper Client.

AP1 - CentOS 7, Java 1.7, Tomcat 7, Jboss Fuse, ESB, Customer Portal, Gamification
Engine, Business Dashboard

PM - power management, APC PowerChute appliance.
Ambari is the central piece, it monitors and starts the hadoop services. Oozie is used as the
job scheduler for the data processing, it distributes the load and keeps the flow in check,
providing feedback if and how a processing job fails. The Oozie jobs are started by the
SMDMC component that uses Apache Camel to create, start and manage the Oozie job.
Figure 43 illustrates the software artifacts and how the VMs perform together.

SmartH2O-Platform Architecture and Design Page 65 D6.2 Version3.2

Figure 43 - SmartH2O development server deployment diagram

4.2 Production Environment Deployment

The Production Environment will have a different virtualization layer than the Development
Environment. Instead of VMWare virtualization layer, it will employ OpenStack
()www.openstack.org virtualization environment which is specialized in Cloud Deployments.
OpenStack can manage large pools of hardware resources and provide high-availability,
scalability, storage and computing for cloud infrastructures.

SmartH2O-Platform Architecture and Design Page 66 D6.2 Version3.2

 Figure 44 - OpenStack architecture

The main components of OpenStack framework with respect to the picture above are:

• Compute
• Cloud fabric controller (Nova) - Compute architecture designed to scale

horizontally on standard both virtual and bare-metal hardware
 Storage

• Object Storage (Swift) - scalable redundant file and object level distributed
storage

• Block Storage (Cinder) - provide persistent block-level distributed storage
 Networking

• Neutron - system for managing networks and IP addresses
 Dashboard

• Horizon - graphical user interface to access, provision and automate cloud-
based servers

 Services
• Identity Service (Keystone) - repository of users mapped to services they can

access
• Image Service (Glance) - provides discovery, registration, and delivery

services for disk and server images

Every server in Production Environment will run over the OpenStack cloud infrastructure
layer. The exact number of virtual servers deployed in the Production Environment will highly
depend on the exact context of Water Utility technical and user requirements. The most
important thing is that the SmartH2O both software and deployment architecture is scalable
and can provide the Client flexibility to cover any real-life scenario.

The proposed architecture serves the requirements for a medium scale Production
environment (approx. 10,000 water utility customers):

SmartH2O-Platform Architecture and Design Page 67 D6.2 Version3.2

 Figure 45 - Production deployment architecture

The mapping of SmartH2O platform on deployment architecture and technical details of each
deployed server are presented in Table 2 below.

Table 2 – SmartH2O platform technology mapping.

SRV SmartH2O component Hardware infrastructure
(virtual)

Software infrastructure

AP1 Customer Portal 4 vCPUs, 10GM RAM, 50GB
storage

Linux
Java 7
Apache WebServer
Tomcat J2EE Server

AP2 Admin Portal
Social Network Crawler
and Data Analyzer

4 vCPUs, 10GM RAM, 50GB
storage

Linux
Java 7
Apache WebServer
Tomcat J2EE Server

AP3 Gamification Engine 2 vCPUs, 5GM RAM, 50GB
storage

Linux
Java 7
Apache WebServer
Tomcat J2EE Server

ES1 ESB
Authentication Gateway
Portal Data Exchange
Manager

4 vCPUs, 10GM RAM, 50GB
storage

Linux
Java 7
Apache WebServer
Tomcat J2EE Server
JBoss Fuse

SmartH2O-Platform Architecture and Design Page 68 D6.2 Version3.2

DB1 SmartH2O Database 4 vCPUs, 12GM RAM,
1TB storage

Linux
MySQL Database
Server

HD1 SMDM - Hadoop
Resource Manager
FTP Server

4 vCPUs, 16GM RAM, 500GB
storage

CentOS
Java7
Ambari
YARN Resource
Manager
YARN App Timeline
Server
Ganglia Server
ZooKeeper Server

HD2 SMDM - Hadoop HDFS
NameNode

4 vCPUs, 16GM RAM, 500GB
storage

Linux
Java 7
HDFS NameNode

HD3 SMDM - Hadoop HDFS
SNameNode

2 vCPUs, 8GM RAM, 500GB
storage

Linux
Java
HDFS SNameNode

HD4 SMDM - Hadoop HDFS
DataNode
SMDM - Hadoop YARN
Node Manager

2 vCPUs, 8GM RAM, 500GB
storage

Linux
Java 7
HDFS DataNode
YARN Node Manager

HD5 SMDM - Hadoop HDFS
DataNode
SMDM - Hadoop YARN
Node Manager

2 vCPUs, 8GM RAM, 500GB
storage

Linux
Java 7
HDFS DataNode
YARN Node Manager

HD… SMDM - Hadoop HDFS
DataNode
SMDM - Hadoop YARN
Node Manager

2 vCPUs, 8GM RAM, 500GB
storage

Linux
Java 7
HDFS DataNode
YARN Node Manager

SmartH2O-Platform Architecture and Design Page 69 D6.2 Version3.2

5. Conclusions and outlook

This deliverable is the first specification of the architecture and components of the SmartH2O
platform. It contains the knowledge matured at month 9 of the project.
The overall architecture has been specified in terms of the major components, data stores,
user interfaces, and system interfaces, as well as the principal control and data flows among
them.
Several components have been examined at depth, which permitted us to identify clearly the
supported use cases, and the required interfaces and message orchestrations.
Other components are under scrutiny, as they depend on the further refinement of the use
cases in the demonstrators and on the progress of the scientific work in the more technical
components, such as the pricing engine and user behaviour model components, which are
due later in the project.
The specification of the architecture will be refined as the project progresses, and the result
of this refinement will be incorporated in the documents accompanying the deliverables
representing the various releases of the SmartH2O platform: Platform implementation and
Integration D6.3 at month 12, D6.4 at month 24, and D6.5 at month 36.

SmartH2O-Platform Architecture and Design Page 70 D6.2 Version3.2

6. References
- [Bozzon2014] Alessandro Bozzon, Piero Fraternali, Luca Galli, Roula Karam: Modeling

CrowdSourcing Scenarios in Socially-Enabled Human Computation Applications. J. Data
Semantics 3(3): 169-188 (2014)

- [Bramb2014] Marco Brambilla, Piero Fraternali, Interaction Flow Modeling Language:
Model-Driven UI Engineering of Web and Mobile Apps with IFML, The MK/OMG Press,
December 2014.

- [Karam2012] Roula Karam, Piero Fraternali, Alessandro Bozzon, Luca Galli: Modeling
End-Users as Contributors in Human Computation Applications. MEDI 2012: 3-15

SmartH2O-Platform Architecture and Design Page 71 D6.2 Version3.2

7. ANNEX 1 – List of Languages, Frameworks and
Technologies

SmartH2O components will use various technologies, frameworks and development
languages. The choice of technology for each component passed several criteria:
- Ability to deliver required functionality
- Open Source
- Open Standard oriented
- Documentation
- Proven record in real-life exploitation
- Commitment for future enhancements and bug-fixing
- Alignment with the entire technical solution of the platform

Smart H2O platform will be constructed using several types of software building blocks:
- New components or sub-components, developed as part of the current project
- Frameworks and technologies: ex. J2EE, Apache Camel Route
- Application Servers: ex. Apache JBoss, JBoss Fuse, Apache Hadoop
- Database Servers: ex. MySQL
- Communication Servers: ex. FTP, SMTP
- Management and Administration components. ex. MySQLWorkbench,
Each type of building block has different types of software characteristics. For example, a
newly developed building block can be described by programming language used for
development, frameworks and libraries used. An Application Server building block can be
described by required operating systems.
For each SmartH2O component we detail bellow its most important software characteristics:

SmartH2O Database
- Operating system: Linux distribution
- MySQL database server
- Adminstration: Workbench client for MySQL administration and manual query
execution

ESB – Enterprise Service Bus
- Operating system: Linux distribution
- Language: Java
- Application Server: JBoss Fuse
- Communication protocols: HTTP(S), REST Web Services
- Frameworks and technologies:
o Apache Camel Route used to define messaging routes and orchestration between
platform component
o J2EE used to develop processing components

Smart Meter Data Manager
Back-end, batch oriented component that processes metered data and feeds the SmartH2O
database with usage date.
- Operating system: Linux distribution
- Languages:

o Java
o Pig
o SQL

- Application Servers:
o Apache JBoss
o Apache Hadoop cluster

- Frameworks and technologies:

SmartH2O-Platform Architecture and Design Page 72 D6.2 Version3.2

o J2EE
o REST WebServices
o MapReduce

- Communication servers:

o FTP used to transfer metered usage files
- DBMS: MySQL relational database to store household and metered data
- Other storage: HDFS to store raw metered data files, intermediate processed metered
data files

Customer Portal
Web application that manages Customer’s interaction with consumption data, games actions
and rewards.
- Operating system: Linux distribution
- Languages:

o Client side: IFML used for Model Driven Development , JavaScript, JQuery
o Server side: IFML used for Model Driven Development , Java

- Frameworks and technologies: J2EE, REST Web Services

Admin Portal
Web application that manages Utility Admin interaction with Customers, consumption data,
games actions and rewards.
- Operating system: Linux distribution
- Languages:

o Client side: IFML used for Model Driven Development , JavaScript, JQuery
o Server side: IFML used for Model Driven Development , Java

- Frameworks and technologies: J2EE, REST Web Services

Gamification Engine
Back-end component that manages definition of games actions and rewards and processes
users’ actions
- Operating system: Linux distribution
- Languages:

o Client side: IFML used for Model Driven Development , JavaScript, JQuery
o Server side: IFML used for Model Driven Development , Java

- Frameworks and technologies: J2EE, REST Web Services

Games Platform
Mobile game trivia pattern to increase awareness regarding water consumption. Game result
can be converted to game points that can be used by Gamification Engine.
- Operating system: Android, iOS
- Languages:

o Client side: C#, Unity 3D Player
o Server side: JavaScript (Node.js)

- Frameworks and technologies: Unity 3D Game Engine

Models of User Behaviour
Application that disaggregates user water consumption during the day and classifies users in
segments.

This component does not have a software deliverable but a set of rules that will be
implemented in Agent Based Modeling component

Agent Based Modeling
This component models user consumption behavior at a larger scale and estimates the
impact of network effect due to users interactions.

- Operating system: Linux, MacOSX, Windows

SmartH2O-Platform Architecture and Design Page 73 D6.2 Version3.2

- Languages:
o Client side: Java, AnyLogic Simulation Platform
o Server side: N/A

- Frameworks and technologies: Eclipse Framework
Authentication Gateway
- Operating system: Linux
- Languages:

o Server side: Java
- Frameworks and technologies: OAUTH2

Social Network Crawler and Data Analyser
- Operating system: Ubuntu
- Database: MongoDB
- Languages:

o Client side: Java
- Frameworks and technologies: Twitter Stream API

Social Network Connector
- Operating system: Ubuntu
- Languages:

o Client side: Java
- Frameworks and technologies: Social Network REST API

SmartH2O-Platform Architecture and Design Page 74 D6.2 Version3.2

8. ANNEX 2 – User Interaction Flows
The User Interaction details for Customer Portal and Admin Portal components are detailed
in the following sections:

• Customer Portal Basic Version
• Customer Portal Advanced Version
• Admin Portal

The following sections describe, using the standardized modelling language IFML
[Bramb2014] described next, the user interaction and backend processing of these
components.

8.1 IFML in a Nutshell

IFML supports the platform-independent description of graphical user interfaces for
applications deployed or accessed on such systems as desktop computers, laptops, PDAs,
mobile phones, and tablets. The main focus is on the structure and behavior of the
application as perceived by the end user. The modeling language also incorporates
references to the data and business logic that influence the user’s experience. This is
achieved respectively by referencing the domain model objects that provide the content
displayed in the interface and the actions that can be triggered by interacting with the
interface. This section introduces the essential features of IFML: its scope, the design rules
behind it, its main modeling elements, and its role in the development process. The Section
concludes with an initial example of the language.

8.1.1 Scope and perspectives
To better understand the aim and scope of IFML it may be useful to refer to the well-known
Model-View-Controller (MVC) software architecture of an interactive application,1 shown in
Figure 46. MVC distinguishes the application internal status and business logic (Model), their
representation in the user interface (View) and the rules governing the response to the user’s
interaction (Controller).

Figure 46- the Model-View-Controller architecture of an interactive application

IFML mainly describes the view, i.e., the content of the front end and the user interaction
mechanisms available in the interface. More precisely, IFML covers various aspects of the
user interface:

• The view structure: it expresses the general organization of the interface, in
terms of ViewContainers, along with their nesting relationships, visibility, and

1See, for example, http://en.wikipedia.org/wiki/Mode-view-controller.

SmartH2O-Platform Architecture and Design Page 75 D6.2 Version3.2

reachability.
• The view content: it specifies what ViewContainers actually contain, in terms of

ViewComponents, i.e., elements for content display and data entry.
ViewComponents that display content are further characterized by a
ContentBinding, which expresses where the published content comes from.

• The events: they are the occurrences that affect the state of the user interface,
which can be produced by the user’s interaction, by the application itself, or by an
external system.

• The event transitions: they specify the consequences of an event on the user
interface, which can be the change of the ViewContainer, the update of the
content on display, the triggering of an action, or a mix of these effects.

• The parameter binding: it clarifies the input-output dependencies between
ViewComponents, view containers, and actions.

For the sake of conciseness, IFML condenses all these perspectives within one diagram type
only, called Interaction Flow Diagram, as opposed to other modeling languages, such as
UML, which rely on multiple diagrams for conveying the various facets of an application.
Besides describing the view part of the application, an IFML Interaction Flow Diagram also
provides the hooks to connect it with the model and controller parts:

• With respect to the controller, IFML represents the effects of the user’s interactions; it
defines the events produced in the view and the course of action taken by the
controller in response to them, such as triggering a business component and
updating the view.

• With respect to the model, IFML describes the data binding between the interface
elements and the objects that embody the state of the application, as well the actions
that are triggered by the user’s interactions.

•

Figure 47- example of interface and its IFML specification

Figure 47 shows as an initial example the IFML model of a simple interface: the view
structure consists of three ViewContainers (“ProductCategories”, “ProductOfCategory”, and
“ProductInformation”), which reflect the top-level organization of the GUI in three distinct
pages. The model shows the content of each ViewContainer: for example, the
“ProductCategories” ViewContainer comprises one ViewComponent called “CategoryList”.
This notation represents the content of the respective page in the GUI, i.e., a list of product
categories. Events are represented in IFML as circles: the “SelectCategory” event specifies
that the “CategoryList” component is interactive. In fact, in the GUI the user can select one of

CategoryList ProductList

«ParameterBindingGroup»
SelectedCategory ! Category

ProductsOfCategory ProductCategories

ProductDetails

ProductInformation

«ParameterBindingGroup»
SelectedProduct ! Product

«List» «List» SelectCategory, SelectProduct, «Details»

SmartH2O-Platform Architecture and Design Page 76 D6.2 Version3.2

the categories to access the list its products. The effect of the “SelectCategory” event is
represented by the arrow emanating from it (called InteractionFlow in IFML): it specifies that
the triggering of the event causes the display of the “ProductOfCategory” ViewContainer and
the rendering of its “ProductList” ViewComponent, i.e., the list of products of the selected
category. The input-output dependency between the “CategoryList” and the “ProductList”
ViewComponents is represented as a parameter binding (the IFML ParameterBindingGroup
element in Figure 47): the value of the “SelectedCategory” parameter, which denotes the
object selected by the user in the “CategoryList” ViewComponent, is associated with the
value of the input parameter “Category”, which is requested for the computation of the
“ProductList” ViewComponent.

8.1.2 Overview of IFML main concepts
An IFML diagram consists of one or more top-level ViewContainers, i.e., interface elements
that comprise components for displaying content and supporting interactions.

Figure 48: example of different top-level interface structures

Figure 48 contrasts two different organizations of the GUI: a mail desktop or rich internet
application (a) consists of a top-level container with embedded sub-containers at different
levels; an e-commerce web site (b) organizes the user interface into different independent
view containers corresponding to page templates.
Each view container can be internally structured in a hierarchy of sub-containers. For
example, in a desktop or rich internet application, the main window can contain multiple
tabbed frames, which in turn may contain several nested panes. The child view containers
nested within a parent view container can be displayed simultaneously (e.g., an object pane
and a property pane) or in mutual exclusion (e.g., two alternative tabs). In case of mutually
exclusive (XOR) containers one could be the default container, displayed by default when the
parent container is accessed. The meaning of a container can be specified more precisely, by
adding a stereotype to the general-purpose construct. For instance, a ViewContainer can be
tagged as «window», as in the case of the “Mail” ViewContainer in Figure 49, to hint at the
nature of its expected implementation.

ProductList

ProductCategories

Product

ShoppingCart CustomerInfo

PaymentInfo Confirmation

MailBox

MessageManagement

Settings

MessageSearch

Messages

Mail

MessageWriter

(a) (b)

SmartH2O-Platform Architecture and Design Page 77 D6.2 Version3.2

Figure 49: example of mutually exclusive sub-containers

In Figure 49, the “Mail” top-level container comprises two sub-containers, displayed
alternatively: one for messages and one for contacts. When the top level container is
accessed, by default the interface displays the “Messages” ViewContainer.
A ViewContainer can contain ViewComponents, which denote the publication of content (e.g.,
a list of objects) or the input of data (e.g., entry forms).

Figure 50 - example of ViewComponents within view containers

Figure 50 shows the notation for embedding ViewComponents within ViewContainers: the
“Search” ViewContainer comprises a “MessageKeywordSearch” ViewComponent that
represents a form for searching; the “MailBox” ViewContainer comprises a “MessageList”
ViewComponent that denotes a list of objects.
A ViewComponent can have input and output parameters. For example, a ViewComponent
that shows the details of an object has an input parameter corresponding to the identifier of
the object to display; a data entry form exposes as output parameters the values submitted
by the user; and a list of items exports as output parameter the item selected by the user.
A ViewContainer and a ViewComponent can be associated with events, to express that they
support the user’s interaction. For example, a ViewComponent can represent: a list
associated with an event for selecting one or more items, a form associated with an event for
input submission, or an image gallery associated with an event for scrolling though the
gallery. IFML events are mapped to interactors2 in the implemented application. The way in
which such interactors are rendered depends on the specific platform for which the
application is deployed and is not captured by IFML, but is rather delegated to transformation
rules from Platform-Independent Model (PIM) to Platform-Specific Model (PSM). For
example, the scrolling of an image gallery may be implemented as a link in an HTML

2 By interactor we mean any interface widget that supports the user’s interaction, such as a button, a link, a check box, and so on.

[D] Messages

«window» [XOR] Mail

Contacts

SmartH2O-Platform Architecture and Design Page 78 D6.2 Version3.2

application and as a swipe gesture handler in a mobile phone application.
The effect of an event is represented by an interaction flow, which connects the event to the
ViewContainer or ViewComponent affected by the event. For example, in an HTML web
application the event produced by the selection of one item from a list may cause the display
of a new page with the details of the selected object. This effect is represented by an
interaction flow connecting the event associated with the list component in a top-level
ViewContainer (the web page) with the ViewComponent representing the object detail,
positioned in a different ViewContainer (the target web page). The interaction flow expresses
a change of state of the user interface: the occurrence of the event causes a transition from a
source to a target web page.
For example, in Figure 51 the “MailBoxList” ViewComponent shows the list of available
mailboxes and is associated with the “MailBoxSelection” event, whereby the user can open
the “MailBox” ViewContainer and access the messages of the mailbox selected in the
“MessageList” ViewComponent .

Figure 51 - Example of interaction flow between ViewComponents

An event can also cause the triggering of an action, which is executed prior to updating the
state of the user interface; the effect of an event firing an action is represented by an
interaction flow connecting the event to an action symbol, consisting of an hexagon. For
example, in a mail management application the user can select several messages from a list
to delete them; the selection event triggers a delete action, after which the ViewContainer
with the updated list is displayed again. The result of action execution is represented by an
interaction flow that connects the action to the ViewContainer or ViewComponent affected by
it.
In Figure 52, The “Message toolbar” ViewContainer is associated with the events for deleting,
archiving and reporting mail messages. Such events are connected by a flow to an action
symbol (a labelled hexagonal icon), which represents the business operation. The outgoing
flow of the action points to the ViewContainer displayed after the action is executed; if the
outgoing flow of an action is omitted, this means that the same ViewContainer wherefrom the
action has been activated remains in view (as illustrated for the “Archive” and “Report”
actions in Figure 52).

MessageList

[D] MailBox

[XOR] MessageManagement

MailBoxList

Messages

«List»

«List»

MailBoxSelec-on/

MessageWriter

SmartH2O-Platform Architecture and Design Page 79 D6.2 Version3.2

Figure 52: Example of events triggering business actions

The model of Figure 52 does not express the objects on which the business actions operate.
Such an input-output dependency between view elements (ViewContainers and
ViewComponents) or between view elements and actions requires the specification of
parameter bindings associated with interaction flows. More specifically, two kinds of
interaction flows can host parameter bindings: navigation flows, which represent navigation
between view elements, and data flows, which express data transfer only, not produced by
the user’s interaction. Parameter binding rules are represented by annotations attached to
navigation and data flows, as shown in Figure 53.

Figure 53: example of parameter bindings used for expressing input-output
dependencies

In Figure 53, the “MessageToolbar” ViewContainer has an input parameter “MessageSet”; its
value is set to the messages selected from the “MessageList” ViewComponent, when the
user produces the “MessageSelection” event. Another parameter binding rule is associated
with the Delete, Archive and Report events: the value of the “MessageSet” parameter is
bound to the “InputMessages” parameter of the triggered action.

MessageList

MailBox

MessageToolbar

«InputParameter» MessageSet

Delete%

Archive%

Report%

MessageSelec4on%

Delete

Archive

Report

%%«ParameterBindingGroup»
SelectedMessages ! MessageSet

%%«ParameterBindingGroup»
MessageSet ! InputMessages

«List»

«OutputParameter»
SelectedMessages

SmartH2O-Platform Architecture and Design Page 80 D6.2 Version3.2

8.1.3 Role of IFML in the development process
The development of interactive applications is typically managed with agile approaches,
which traverse several cycles of “problem discovery” / “design refinement” / “implementation”.
Each iteration of the development process generates a prototype or a partial version of the
system. Such an incremental lifecycle is particularly appropriate for modern Web and mobile
applications, which must be deployed quickly and change frequently during their lifetime to
adapt to the user’s requirements. Figure 54 schematizes a possible development process
and positions IFML within the flow of activities.

Figure 54 - role of IFML in the development process of an interactive application

8.1.4 A complete example
As a conclusion to this brief introduction of IFML and before the details of the complete IFML
specifications of the SmartH2O platform front-end, we present a simple, yet complete,
example. The application is an online store, where the user can browse products, such as
books, music and software, and add products to his shopping cart, as shown by the UML use
case diagram of Figure 55

Figure 55 - use cases of the Bookstore application

The application has a Web front-end; in the “Browse books” use case, the user accesses a
home page, which contains a list of product categories. Clicking on a product category, such
as Books, leads to a page displaying the summary data about all the items of that category;
clicking on a “See more” associated with one item’s summary opens a page where the full
details of the selected object are presented. Figure 56 shows the mock-ups of the application
front-end supporting the “Browse books” use case.

Requirements+
Specification Domain+Modelling

Architecture+Design

Implementation

Maintainance+
and+Evolution

Front=end+Modelling

Testing+and+Evaluation

Application

Business+logic+Modelling

IFML%%model
Domain,
model

Requirements,
specifications

Business,logic
model

Deployment

SmartH2O-Platform Architecture and Design Page 81 D6.2 Version3.2

Figure 56 - mockup of the user interface supporting the “Browse books” use case

When looking at the details of an item, the user can press the “Add to cart” button to insert it
in his trolley; a modal window appears, where the user can insert the quantity of goods he
wants to purchase; after submitting the desired quantity, a confirmation pop-up window is
presented to acknowledge the addition of the product to the cart. Figure 57 shows the mock-
ups of the interface supporting the “Manage cart” use case.

Figure 57 - mockup of the user interface supporting the “Manage cart” use case

The IFML model of the Bookstore application contains the five ViewContainers shown in
Figure 58.

SmartH2O-Platform Architecture and Design Page 82 D6.2 Version3.2

Figure 58 - IFML ViewContainers of the Bookstore application

The ViewContainers are annotated with stereotypes (such as H, for “Home”, L for “Landmark”
and “Modal” and “Modeless”), which further specify their properties. The ViewContainers
definition is refined by specifying the ViewComponents they comprise, as illustrated in Figure
59.

Figure 59 - ViewComponents embedded in IFML ViewContainers, with their mock-up
rendition

Interactivity is represented by adding the relevant events and specifying the interaction flows
they trigger, completed with the parameter binding between the source and the target
components of the interaction flows. The model of Figure 60 shows that the “CategoryList”

ProductOfCategory [H] [L] ProductCategories ProductInformation

«Modal» Quantity «Modeless» Confirmation

CategoryList ProductList Product
Details

«List» «List» «Details»

Quantity

«Form»
Confirmation

Message

«Details»

ProductOfCategory[H] [L] ProductCategories ProductInformation

[Modal] Quantity [Modeless] Confirmation

CloseAccept

SmartH2O-Platform Architecture and Design Page 83 D6.2 Version3.2

ViewComponent supports an interactive event “SelectCategory”, whereby the user can
choose a category from the index; as a result, the “ProductOfCategory” page is displayed,
and the “ProductList” ViewComponent shows the items corresponding to the chosen
category. The input-output dependency between the “CategoryList” and the “ProductList”
ViewComponents is represented by the parameter binding group, which associates the
“SelectedCategory” output parameter of the source component with the “Category” input
parameter of the target component. The same modeling pattern is used to express the
interaction for selecting a product from the “ProductList” component and then accessing its
data in the “ProductDetails” component.

Figure 60 - IFML events and interaction flows of the “Browse Products” use case

Some event may trigger the execution of a piece of business logic; as an example Figure 57
and Figure 61 show the activation of an action for inserting items in the shopping cart: after
the user presses the “Add to cart” button associated with the “ProductDetails” component, a
modal window appears asking for the quantity of items desired. The quantity submission
event triggers the execution of the “Add to cart” action. The quantity value from the Form
ViewComponent and the “DisplayedProduct” parameter from the “ProductDetails”
ViewComponent are submitted as input parameters to the “Add to cart” action. Once the
action is completed, a confirmation window is displayed.
Notice that the binding of the “Quantity” output parameter is associated with an interaction
flow, which denotes the effect of a submit event that requires the user’s interaction;
conversely, the binding of the “DisplayedProduct” parameter is associated with a data flow,
which merely expresses an input-output dependency, automatically performed by the system
and not triggered by a user’s interaction.

Figure 61 - IFML events and interaction flows of the “Browse Products” use case

CategoryList ProductList

«ParameterBindingGroup»
SelectedCategory ! Category

Product
Details

«ParameterBindingGroup»
SelectedProduct ! Product

«List» «List» «Details» SelectCategory, SelectProduct,

ProductOfCategory [H] [L] ProductCategories ProductInformation

Product
Details

Product

«Details»

Quantity

«Modal» Quantity

«Form»
AddToCart Add to

cart

«ParameterBindingGroup»
DisplayedProduct ! Product

«ParameterBindingGroup»
Quantity ! Qty

«Modeless» Confirmation

Confirmation
Message

«Details»

SmartH2O-Platform Architecture and Design Page 84 D6.2 Version3.2

8.2 IFML specification of the Customer Portal Basic Version

8.2.1 Project
Locale Summary

 English
 French
 Italian
 Spanish

RunningProfiles Summary

 Running Profiles

Property Summary

 ajaxDebug

 app-code

SMTPServer Summary

 smtp server

XsdProvider Summary

 CommunityWS

XsdResource Summary

 CommunityWS / Community

Database Summary

 Domain Model / CommunityDB

SmartH2O-Platform Architecture and Design Page 85 D6.2 Version3.2

8.2.2 [SiteView] Consumer Portal

Summary Sections

8.2.2..1 Area Summary
 Visual water meter

8.2.2..2 MasterPage Summary
 UserProfile

8.2.2..3 Component Summary
 [ModuleInstanceUnit] Change Language

 [ModuleInstanceUnit] Logout

8.2.2..4 Landmark Summary
 Visual water meter

8.2.2..5 Incoming Flow Summary
 English from UserProfile / [DataUnit] Welcome to [ModuleInstanceUnit] Change Language

 Italian from UserProfile / [DataUnit] Welcome to [ModuleInstanceUnit] Change Language

 Logout from UserProfile / [DataUnit] Welcome to [ModuleInstanceUnit] Logout

8.2.2..6 Outgoing Flow Summary
 OKFlow8 from [ModuleInstanceUnit] Change Language to UserProfile

SmartH2O-Platform Architecture and Design Page 86 D6.2 Version3.2

[Area] Visual water meter

8.2.2..1 Page Summary
 Visual water meter

8.2.2..2 Landmark Summary
 Visual water meter

[Page] Visual water meter

SmartH2O-Platform Architecture and Design Page 87 D6.2 Version3.2

Component Summary

 [DataUnit] Alerts

 [DataUnit] Bill

 [PowerIndexUnit] ConsumptionChart

 [DataUnit] Tip

 [PowerIndexUnit] Videos

8.2.3 [MasterPage] UserProfile

Component Summary

 [GetUnit] Get Username

 [DataUnit] Welcome

Incoming Flow Summary

 OKFlow8 from Consumer Portal / [ModuleInstanceUnit] Change Language to UserProfile

Outgoing Flow Summary

 English from [DataUnit] Welcome to Consumer Portal/ [ModuleInstanceUnit] Change Language

 Italian from [DataUnit] Welcome to Consumer Portal/ [ModuleInstanceUnit] Change Language

 Logout from [DataUnit] Welcome to Consumer Portal/ [ModuleInstanceUnit] Logout

8.2.4 [MasterPage] UserProfile (Layout)

SmartH2O-Platform Architecture and Design Page 88 D6.2 Version3.2

8.2.5 Statistics
Structure

 Entity 28(4 derived)(5 volatile)

 Attribute 168(5 derived)

 Attribute per Entity 6(0 derived)

 Relationship 22(1 derived)

 Relationship per Entity 0(0 derived)

Navigation

 Site View 4

 Service View 5

 Module View 1

 Context Parameter 13

 Area 12

 Area per Site View 3

 Page 64

 Page per Site View 16

 Master Page 4

 Operation Group 43

 Operation Group per View 4

 Port 19

 Job 2

 Content Module 0

 Operation Module 65

 Hybrid Module 8

Content Units

Content Units 218

Content Components per Site View 54

Content Components per Page 3

 Details 26

 Form 33

 Get 25

 Hierarchy 16

 Simple List 5

 Input Port 2

SmartH2O-Platform Architecture and Design Page 89 D6.2 Version3.2

 Module 3

 Checkable List 1

 Multiple Details 6

 Multiple Form 2

 Message 13

 View Component 8

 Output Port 6

 List 26

 Script 4

 Scroller 2

 Selector 40

Operation Units

Operation Units 638

Operation Components per Site View 159

Operation Components per Area 53

Operation Components per Operation Group 14

 Adapter 5

 BLOB Utils Component 2

 Connect 7

 Create 18

 Delete 9

 Disconnect 10

 Error Response 19

 Get 8

 Init Job 2

 Input Port 71

 Is Not Null 35

 Jump 9

 KO Port 52

 Login 1

 Logout 1

 Loop 4

 Mail 1

 Update 23

 Module 97

SmartH2O-Platform Architecture and Design Page 90 D6.2 Version3.2

 No Op 4

 OK Port 73

 Parameter Collector 9

 Password 1

 Query 1

 Reset 6

 Response 19

 Scale Image Unit 6

 Schedule Job 4

 Script 25

 Selector 70

 Solicit 19

 Strings Function Unit 8

 Switch 13

 Time 6

8.3 IFML specification of the Customer Portal Advanced Version

8.3.1 Project
Locale Summary

 English

 French

 Italian

 Spanish

RunningProfiles Summary

 Running Profiles

Property Summary

 ajaxDebug

 app-code

SMTPServer Summary

 smtp server

XsdProvider Summary

 CommunityWS

SmartH2O-Platform Architecture and Design Page 91 D6.2 Version3.2

XsdResource Summary

 CommunityWS / Community

Database Summary

 Domain Model / CommunityDB

8.3.2 [SiteView] Private

Summary Sections

8.3.2..1 Area Summary
 Gamified Water Meter

 HQ.UserDashboard

 Leaderboards

 Rewards

8.3.2..2 Page Summary
 Getting Started

 HQ.Message

8.3.2..3 MasterPage Summary
 UserProfile

8.3.2..4 Component Summary
 [ModuleInstanceUnit] Change Language

 [ParameterCollectorUnit] GenericMessage

SmartH2O-Platform Architecture and Design Page 92 D6.2 Version3.2

 [ParameterCollectorUnit] Legend

 [ModuleInstanceUnit] Logout

8.3.2..5 Landmark Summary
 Gamified Water Meter

 Leaderboards

 Rewards

8.3.2..6 Incoming Flow Summary
 English from UserProfile / [DataUnit] Welcome to [ModuleInstanceUnit] Change Language

 Italian from UserProfile / [DataUnit] Welcome to [ModuleInstanceUnit] Change Language

 Logout from UserProfile / [DataUnit] Welcome to [ModuleInstanceUnit] Logout

8.3.2..7 Outgoing Flow Summary
 OKFlow8 from [ModuleInstanceUnit] Change Language to UserProfile

 OKLink47 from [ParameterCollectorUnit] Legend to Getting Started

 OKLink71 from [ParameterCollectorUnit] GenericMessage to HQ.Message / [DataUnit] Generic
Message

SmartH2O-Platform Architecture and Design Page 93 D6.2 Version3.2

[Area] Gamified Water Meter

8.3.2..1 Page Summary
 Consumption Monitoring

 Neighborhood leaderboard complete

8.3.2..2 Landmark Summary
 Gamified Water Meter

SmartH2O-Platform Architecture and Design Page 94 D6.2 Version3.2

Consumption Monitoring

8.3.2..1 Component Summary
 [PowerIndexUnit] Badge Progress Chart

 [DataUnit] Bill

 [MultiMessageUnit] Consumption Chart

 [ModuleInstanceUnit] DashboardNeigh

 [SelectorUnit] get user

 [SelectorUnit] getPhoto

 [GetUnit] GetUserID

 [DataUnit] GoalChart

 [GetUnit] User

 [PowerIndexUnit] Your Actions

SmartH2O-Platform Architecture and Design Page 95 D6.2 Version3.2

[Page] Neighborhood leaderboard complete

8.3.2..1 Component Summary
 [GetUnit] Get Nickname

 [SelectorUnit] getNeighbors

 [HierarchicalIndexUnit] Overall Participation

 [MultiDataUnit] User overall position

8.3.2..2 Internal Flow Summary
 Go to participation from [MultiDataUnit] User overall

position
to [HierarchicalIndexUnit] Overall
Participation

[Area] HQ.UserDashboard

8.3.2..1 Page Summary

SmartH2O-Platform Architecture and Design Page 96 D6.2 Version3.2

 History badges

 History points

 HQ.MyDashboard

 HQ.UserDashboard.Private

8.3.2..2 Component Summary
 [ModuleInstanceUnit] Access Dashboard

 [JumpUnit] go to public dashboard

 [ParameterCollectorUnit] HQ.UserDashboard

 [JumpUnit] Jump To Rewards

 [ParameterCollectorUnit] my dashboard

 [ParameterCollectorUnit] User History Points

8.3.2..3 Incoming Flow Summary
 Link49 from HQ.MyDashboard /

[ModuleInstanceUnit] Dashboard
to [JumpUnit] go to public dashboard

 See Your Rewards from History points / [DataUnit] Text
Chunk

to [JumpUnit] Jump To Rewards

8.3.2..4 Outgoing Flow Summary
 OKFlow14 from [ParameterCollectorUnit] my dashboard to HQ.MyDashboard

 OKFlow39 from [ParameterCollectorUnit] User History Points to History points

 OKFlow58 from [ModuleInstanceUnit] Access Dashboard to HQ.UserDashboard.Private

8.3.2..5 Internal Flow Summary
 OKFlow59 from [ModuleInstanceUnit] Access Dashboard to [ParameterCollectorUnit] my

dashboard

 OKLink102 from [ParameterCollectorUnit] HQ.UserDashboard to [ModuleInstanceUnit] Access
Dashboard

8.3.2..6 Property Summary
 app-code

SmartH2O-Platform Architecture and Design Page 97 D6.2 Version3.2

[Page] History badges

8.3.2..1 Component Summary
 [PowerIndexUnit] my badges

 [GetUnit] user

8.3.2..2 Incoming Flow Summary
 HQ.YourBadges from HQ.MyDashboard / [ModuleInstanceUnit]

Dashboard
to History badges

[Page] History points

8.3.2..1 Component Summary
 [PowerIndexUnit] all actions

 [NoOpContentUnit] Back

 [PowerIndexUnit] Next Rewards

 [PowerIndexUnit] Possible Rewards

 [PowerIndexUnit] Rewards

 [DataUnit] Text Chunk

 [GetUnit] user

 [DataUnit] User Data

8.3.2..2 Incoming Flow Summary

SmartH2O-Platform Architecture and Design Page 98 D6.2 Version3.2

 History actions from HQ.MyDashboard / [ModuleInstanceUnit] Dashboard to History points

 OKFlow39 from HQ.UserDashboard / [ParameterCollectorUnit] User
History Points

to History points

8.3.2..3 Outgoing Flow Summary
 Go Back from [NoOpContentUnit] Back to HQ.MyDashboard

 See Your Rewards from [DataUnit] Text Chunk to HQ.UserDashboard / [JumpUnit] Jump To
Rewards

[Page] HQ.MyDashboard

8.3.2..1 ConditionExpression Summary
 AreYouLogged?

 ExsistComponent?

 ExsistPost?

8.3.2..2 Component Summary
 [ScriptUnit] Check private

 [DataUnit] congratulations

 [ModuleInstanceUnit] Dashboard

 [SelectorUnit] get user

 [GetUnit] User

8.3.2..3 Variable Summary
 Component

 NickDashboard

 partecipationPosition

 partecipationScore

SmartH2O-Platform Architecture and Design Page 99 D6.2 Version3.2

 Post

 reputationPosition

 reputationScore

 User

 useroid

8.3.2..4 Incoming Flow Summary
 Go Back from History points / [NoOpContentUnit] Back to HQ.MyDashboard

 OKFlow14 from HQ.UserDashboard / [ParameterCollectorUnit] my
dashboard

to HQ.MyDashboard

8.3.2..5 Outgoing Flow Summary
 History actions from [ModuleInstanceUnit] Dashboard to History points

 HQ.YourBadges from [ModuleInstanceUnit] Dashboard to History badges

 Link49 from [ModuleInstanceUnit] Dashboard to HQ.UserDashboard / [JumpUnit] go to
public dashboard

[Page] HQ.UserDashboard.Private

8.3.2..1 ConditionExpression Summary
 ExisitComponent?

 ExsistTopic?

8.3.2..2 Component Summary
 [ScriptUnit] Check private

 [DataUnit] Contact

 [GetUnit] get oid

 [MultiDataUnit] Most Important Badges

 [DataUnit] Private Message

SmartH2O-Platform Architecture and Design Page 100 D6.2 Version3.2

8.3.2..3 Variable Summary
 Component

 Topic

 User

8.3.2..4 Incoming Flow Summary
 OKFlow58 from HQ.UserDashboard / [ModuleInstanceUnit] Access

Dashboard
to HQ.UserDashboard.Private

[Area] Leaderboards

8.3.2..1 Area Summary
 Leaderboards

8.3.2..2 Page Summary
 Leaderboards

8.3.2..3 Component Summary
 [JumpUnit] go to dashboard

 [ModuleInstanceUnit] Go To User LeaderBoard Position

 [ModuleInstanceUnit] OnChange NoOp

 [ModuleInstanceUnit] OnChange NoOp

 [ParameterCollectorUnit] Public Dashboard

 [ParameterCollectorUnit] UserRanking

8.3.2..4 Landmark Summary
 Leaderboards

SmartH2O-Platform Architecture and Design Page 101 D6.2 Version3.2

8.3.2..5 Incoming Flow Summary
 Clear from Leaderboards / [EntryUnit] Monthly Form to [ModuleInstanceUnit] OnChange

NoOp

 Link1 from Leaderboards / [HierarchicalIndexUnit] Overall
Participation

to [JumpUnit] go to dashboard

Link145

from HQ.UserDashboard.Public /
[ModuleInstanceUnit] Dashboard

to [ParameterCollectorUnit] Public
Dashboard

 Link5 from Leaderboards / [HierarchicalIndexUnit]
Monthly Participation

to [JumpUnit] go to dashboard

 Search from Leaderboards / [EntryUnit] Monthly Form to [ModuleInstanceUnit] OnChange
NoOp

 Set from Leaderboards / [EntryUnit] Monthly Form to [ModuleInstanceUnit] OnChange
NoOp

8.3.2..6 Outgoing Flow Summary
 OKFlow1 from [ModuleInstanceUnit] OnChange NoOp to Leaderboards

 OKFlow19 from [ModuleInstanceUnit] OnChange NoOp to Leaderboards

 OKFlow25 from [ModuleInstanceUnit] Go To User
LeaderBoard Position

to Leaderboards

 OKFlow81 from [ParameterCollectorUnit] Public Dashboard to Leaderboards /
[ModuleInstanceUnit] Check Public
Dashboard Access

8.3.2..7 Internal Flow Summary
 OKFlow370 from [ParameterCollectorUnit] UserRanking to [ModuleInstanceUnit] Go To User

LeaderBoard Position

8.3.2..8 Property Summary
 app-code

SmartH2O-Platform Architecture and Design Page 102 D6.2 Version3.2

[Area] Leaderboards

8.3.2..1 Page Summary
 HQ.NotPublicProfile

 HQ.UserDashboard.Public

8.3.2..1 Component Summary
 [ModuleInstanceUnit] Check Public Dashboard Access

 [JumpUnit] go to my dashboard

8.3.2..2 Incoming Flow Summary
 OKFlow81 from Leaderboards / [ParameterCollectorUnit]

Public Dashboard
to [ModuleInstanceUnit] Check Public
Dashboard Access

8.3.2..3 Outgoing Flow Summary
 OKFlow49 from [ModuleInstanceUnit] Check Public

Dashboard Access
to HQ.UserDashboard.Public

 KOFlow10 from [ModuleInstanceUnit] Check Public
Dashboard Access

to HQ.NotPublicProfile

8.3.2..4 Internal Flow Summary
 OKFlow52 from [ModuleInstanceUnit] Check Public

Dashboard Access
to [JumpUnit] go to my dashboard

SmartH2O-Platform Architecture and Design Page 103 D6.2 Version3.2

[Page] HQ.NotPublicProfile

8.3.2..1 Component Summary
 [DataUnit] Generic Message

 [GetUnit] langage

8.3.2..2 Incoming Flow Summary
 KOFlow10 from Leaderboards / [ModuleInstanceUnit] Check Public

Dashboard Access
to HQ.NotPublicProfile

[Page] HQ.UserDashboard.Public

8.3.2..1 Component Summary
 [ScriptUnit] Check private

 [ModuleInstanceUnit] Dashboard

 [SelectorUnit] get user

 [GetUnit] get user

8.3.2..2 Variable Summary
 Name

 NamePageTitle

 SurnamePageTitle

8.3.2..3 Incoming Flow Summary
 OKFlow49 from Leaderboards / [ModuleInstanceUnit] Check Public

Dashboard Access
to HQ.UserDashboard.Public

SmartH2O-Platform Architecture and Design Page 104 D6.2 Version3.2

8.3.2..4 Outgoing Flow Summary
 Link145 from [ModuleInstanceUnit] Dashboard to Leaderboards / [ParameterCollectorUnit]

Public Dashboard

[Page] Leaderboards

8.3.2..1 ConditionExpression Summary
 isPrivate?

8.3.2..2 Component Summary
 [SelectorUnit] Badge Type Area

 [GetUnit] BlockFactor

 [ScriptUnit] Filter

 [GetUnit] Get Nickname

 [EntryUnit] Monthly Form

SmartH2O-Platform Architecture and Design Page 105 D6.2 Version3.2

 [HierarchicalIndexUnit] Monthly Participation

 [MultiMessageUnit] n.User 7 Days filtered

 [MultiMessageUnit] n.User 7 Days Total

 [SelectorUnit] n.User filtered

 [MultiMessageUnit] n.User overall

 [SelectorUnit] n.User reputation

 [SelectorUnit] n.User total

 [SelectorUnit] n.User total

 [MultiMessageUnit] n.User total overall

 [HierarchicalIndexUnit] Overall Participation

 [SelectorUnit] Select Aree Geo

 [MultiDataUnit] User monthly position

 [MultiDataUnit] User overall position

8.3.2..3 Variable Summary
 privateProfi

8.3.2..4 Incoming Flow Summary
 OKFlow1 from Leaderboards / [ModuleInstanceUnit] OnChange NoOp to Leaderboards

 OKFlow19 from Leaderboards / [ModuleInstanceUnit] OnChange NoOp to Leaderboards

 OKFlow25 from Leaderboards / [ModuleInstanceUnit] Go To User LeaderBoard
Position

to Leaderboards

8.3.2..5 Outgoing Flow Summary
 Clear from [EntryUnit] Monthly Form to Leaderboards / [ModuleInstanceUnit]

OnChange NoOp

 Link1 from [HierarchicalIndexUnit] Overall Participation to Leaderboards / [JumpUnit] go to
dashboard

 Link5 from [HierarchicalIndexUnit] Monthly Participation to Leaderboards / [JumpUnit] go to
dashboard

 Search from [EntryUnit] Monthly Form to Leaderboards / [ModuleInstanceUnit]
OnChange NoOp

 Set from [EntryUnit] Monthly Form to Leaderboards / [ModuleInstanceUnit]
OnChange NoOp

8.3.2..6 Internal Flow Summary
 Go to participation from [MultiDataUnit] User overall

position
to [HierarchicalIndexUnit] Overall
Participation

 Go to participation from [MultiDataUnit] User monthly
position

to [HierarchicalIndexUnit] Monthly
Participation

SmartH2O-Platform Architecture and Design Page 106 D6.2 Version3.2

[Area] Rewards

8.3.2..1 Page Summary
 Error

 Reward Details

 Rewards

8.3.2..2 Component Summary
 [JumpUnit] Go to user points details

 [ModuleInstanceUnit] Redeem Reward

 [ParameterCollectorUnit] Rewards

8.3.2..3 Landmark Summary
 Rewards

8.3.2..4 Incoming Flow Summary
 Get Reward from Reward Details / [DataUnit] Reward to [ModuleInstanceUnit] Redeem Reward

8.3.2..5 Outgoing Flow Summary
 OKFlow164 from [ParameterCollectorUnit] Rewards to Rewards

 KOFlow30 from [ModuleInstanceUnit] Redeem Reward to Error / [MultiMessageUnit] Attention

8.3.2..6 Internal Flow Summary

SmartH2O-Platform Architecture and Design Page 107 D6.2 Version3.2

 OKFlow169 from [ModuleInstanceUnit] Redeem Reward to [JumpUnit] Go to user points details

[Page] Error

8.3.2..1 Component Summary
 [MultiMessageUnit] Attention

 [NoOpContentUnit] Back

8.3.2..2 Incoming Flow Summary
 KOFlow30 from Rewards / [ModuleInstanceUnit] Redeem Reward to [MultiMessageUnit] Attention

8.3.2..3 Outgoing Flow Summary
 Go Back from [NoOpContentUnit] Back to Rewards

[Page] Reward Details

8.3.2..1 ConditionExpression Summary
 isRedeemable

8.3.2..2 Component Summary
 [NoOpContentUnit] Back

 [GetUnit] Get UserCtxParam

SmartH2O-Platform Architecture and Design Page 108 D6.2 Version3.2

 [MultiMessageUnit] NoReward

 [DataUnit] Reward

 [SelectorUnit] Select Community User

8.3.2..3 Variable Summary
 availableCredits

 neededPoints

8.3.2..4

8.3.2..5 Incoming Flow Summary
 View Reward from Rewards / [PowerIndexUnit] Rewards to [DataUnit] Reward

8.3.2..6 Outgoing Flow Summary
 Get Reward from [DataUnit] Reward to Rewards / [ModuleInstanceUnit] Redeem Reward

 Go Back from [NoOpContentUnit] Back to Rewards

[Page] Rewards

8.3.2..1 Component Summary
 [GetUnit] Get UserCtxParam

 [GetUnit] langage

 [PowerIndexUnit] Rewards

 [DataUnit] Rewards Area

 [SelectorUnit] Select Community User

8.3.2..2 Incoming Flow Summary
 Go Back from Error / [NoOpContentUnit] Back to Rewards

SmartH2O-Platform Architecture and Design Page 109 D6.2 Version3.2

 Go Back from Reward Details / [NoOpContentUnit] Back to Rewards

 OKFlow164 from Rewards / [ParameterCollectorUnit] Rewards to Rewards

8.3.2..3 Outgoing Flow Summary
 View Reward from [PowerIndexUnit] Rewards to Reward Details / [DataUnit] Reward

[MasterPage] UserProfile

8.3.2..1 Component Summary
 [GetUnit] Get Username

 [DataUnit] Welcome

8.3.2..2 Incoming Flow Summary
 OKFlow8 from Private / [ModuleInstanceUnit] Change Language to UserProfile

8.3.2..3 Outgoing Flow Summary
 English from [DataUnit] Welcome to Private / [ModuleInstanceUnit] Change Language

 Italian from [DataUnit] Welcome to Private / [ModuleInstanceUnit] Change Language

 Logout from [DataUnit] Welcome to Private / [ModuleInstanceUnit] Logout

[MasterPage] UserProfile (Layout)

SmartH2O-Platform Architecture and Design Page 110 D6.2 Version3.2

[Page] Getting Started

8.3.2..1 Component Summary
 [DataUnit] Getting Started

 [GetUnit] language

8.3.2..2 Incoming Flow Summary
 OKLink47 from Private / [ParameterCollectorUnit] Legend to Getting Started

8.3.2..3 Property Summary
 app-code

[Page] HQ.Message

8.3.2..1 Component Summary
 [DataUnit] Generic Message

 [GetUnit] langage

8.3.2..2 Incoming Flow Summary
 OKLink71 from Private / [ParameterCollectorUnit]

GenericMessage
to [DataUnit] Generic Message

8.3.3 Statistics
Structure

 Entity 28(4 derived)(5 volatile)

SmartH2O-Platform Architecture and Design Page 111 D6.2 Version3.2

 Attribute 168(5 derived)

 Attribute per Entity 6(0 derived)

 Relationship 22(1 derived)

 Relationship per Entity 0(0 derived)

Navigation

 Site View 4

 Service View 5

 Module View 1

 Context Parameter 13

 Area 12

 Area per Site View 3

 Page 64

 Page per Site View 16

 Master Page 4

 Operation Group 43

 Operation Group per View 4

 Port 19

 Job 2

 Content Module 0

 Operation Module 65

 Hybrid Module 8

Content Units

Content Units 218

Content Components per Site View 54

Content Components per Page 3

 Details 26

 Form 33

 Get 25

 Hierarchy 16

 Simple List 5

 Input Port 2

 Module 3

 Checkable List 1

 Multiple Details 6

SmartH2O-Platform Architecture and Design Page 112 D6.2 Version3.2

 Multiple Form 2

 Message 13

 View Component 8

 Output Port 6

 List 26

 Script 4

 Scroller 2

 Selector 40

Operation Units

Operation Units 638

Operation Components per Site View 159

Operation Components per Area 53

Operation Components per Operation Group 14

 Adapter 5

 BLOB Utils Component 2

 Connect 7

 Create 18

 Delete 9

 Disconnect 10

 Error Response 19

 Get 8

 Init Job 2

 Input Port 71

 Is Not Null 35

 Jump 9

 KO Port 52

 Login 1

 Logout 1

 Loop 4

 Mail 1

 Update 23

 Module 97

 No Op 4

 OK Port 73

 Parameter Collector 9

SmartH2O-Platform Architecture and Design Page 113 D6.2 Version3.2

 Password 1

 Query 1

 Reset 6

 Response 19

 Scale Image Unit 6

 Schedule Job 4

 Script 25

 Selector 70

 Solicit 19

 Strings Function Unit 8

 Switch 13

 Time 6

8.4 IFML specification of the Customer Portal Admin Version

8.4.1 Project
Locale Summary

 English
 French
 Italian
 Spanish

RunningProfiles Summary

 Running Profiles

Property Summary

 ajaxDebug

 app-code

SMTPServer Summary

 smtp server

XsdProvider Summary

 CommunityWS

XsdResource Summary

 CommunityWS / Community

SmartH2O-Platform Architecture and Design Page 114 D6.2 Version3.2

Database Summary

 Domain Model / CommunityDB

8.4.2 [SiteView] Administration

Summary Sections

8.4.2..1 Area Summary
 Administrator Users Area

 Community Users Area

 Gamification Area

 Notification Area

 Rewards Area

 Text Management Area

8.4.2..2 MasterPage Summary
 UserProfile

8.4.2..3 Component Summary
 [ModuleInstanceUnit] Logout

8.4.2..4 Landmark Summary
 Administrator Users Area

 Community Users Area

 Gamification Area

 Notification Area

 Rewards Area

 Text Management Area

8.4.2..5 Incoming Flow Summary
 Logout from UserProfile / [DataUnit] Welcome to [ModuleInstanceUnit] Logout

SmartH2O-Platform Architecture and Design Page 115 D6.2 Version3.2

[Area] Administrator Users Area

8.4.2..1 Page Summary
 Create New Administrator User

 Manage Administrator Users

 Modify Adminstrator User

8.4.2..2

8.4.2..3 Component Summary
 [ModuleInstanceUnit] Create Adminstrator User

 [ModuleInstanceUnit] Modify Administrator User

8.4.2..4 Landmark Summary
 Administrator Users Area

8.4.2..5 Incoming Flow Summary
 Save from Create New Administrator User /

[EntryUnit] New
to [ModuleInstanceUnit] Create
Adminstrator User

 Update from Modify Adminstrator User / [EntryUnit]
Modify

to [ModuleInstanceUnit] Modify
Administrator User

8.4.2..6 Outgoing Flow Summary
 OKFlow92 from [ModuleInstanceUnit] Modify Administrator User to Manage Administrator Users

 OKFlow93 from [ModuleInstanceUnit] Create Adminstrator User to Manage Administrator Users

SmartH2O-Platform Architecture and Design Page 116 D6.2 Version3.2

[Page] Create New Administrator User

8.4.2..1 Component Summary
 [EntryUnit] New

8.4.2..2 Incoming Flow Summary
 Add New Administrator User from Manage Administrator Users to [EntryUnit] New

8.4.2..3 Outgoing Flow Summary
 Back from [EntryUnit] New to Manage Administrator Users

 Save from [EntryUnit] New to Administrator Users Area / [ModuleInstanceUnit] Create
Adminstrator User

 [Page] Manage Administrator Users

8.4.2..1 Component Summary
 [PowerIndexUnit] Administrator Users

 [SelectorUnit] Select Group

8.4.2..2 Incoming Flow Summary
 Back from Create New Administrator User / [EntryUnit] New to Manage Administrator Users

 Back from Modify Adminstrator User / [EntryUnit] Modify to Manage Administrator Users

 OKFlow92 from Administrator Users Area / [ModuleInstanceUnit]
Modify Administrator User

to Manage Administrator Users

 OKFlow93 from Administrator Users Area / [ModuleInstanceUnit]
Create Adminstrator User

to Manage Administrator Users

8.4.2..3 Outgoing Flow Summary

SmartH2O-Platform Architecture and Design Page 117 D6.2 Version3.2

 Add New
Administrator User

from Manage Administrator Users to Create New Administrator User /
[EntryUnit] New

 Modify from [PowerIndexUnit] Administrator
Users

to Modify Adminstrator User /
[EntryUnit] Modify

[Page] Modify Adminstrator User

8.4.2..1 Component Summary
 [EntryUnit] Modify

8.4.2..2 Incoming Flow Summary
 Modify from Manage Administrator Users / [PowerIndexUnit] Administrator

Users
to [EntryUnit] Modify

8.4.2..3 Outgoing Flow Summary
 Back from [EntryUnit] Modify to Manage Administrator Users

 Update from [EntryUnit] Modify to Administrator Users Area / [ModuleInstanceUnit] Modify
Administrator User

[Area] Community Users Area

SmartH2O-Platform Architecture and Design Page 118 D6.2 Version3.2

8.4.2..1 Page Summary
 Action

 Actions History

 Error

 Reward

 Rewards History

 Users list

8.4.2..2 Component Summary
 [ModuleInstanceUnit] Assign Action To User

 [ModuleInstanceUnit] Assign Reward To User

 [ModuleInstanceUnit] Delete Community User

 [ModuleInstanceUnit] On Change User Reward

 [ModuleInstanceUnit] OnChange User Action Type

 [ModuleInstanceUnit] Remove User Action Instance

 [ModuleInstanceUnit] Set User Selected

 [ModuleInstanceUnit] Set User Selected

8.4.2..3 Landmark Summary
 Community Users Area

SmartH2O-Platform Architecture and Design Page 119 D6.2 Version3.2

8.4.2..4 Incoming Flow Summary
 Delete from Users list / [PowerIndexUnit] Users to [ModuleInstanceUnit] Delete

Community User

 Delete from Actions History / [PowerIndexUnit] Actions to [ModuleInstanceUnit] Remove User
Action Instance

 Flow97 from Action / [EntryUnit] New action to [ModuleInstanceUnit] OnChange
User Action Type

 OnChange
User Reward

from Reward / [EntryUnit] New Reward to [ModuleInstanceUnit] On Change
User Reward

 Save from Reward / [EntryUnit] New Reward to [ModuleInstanceUnit] Assign Reward
To User

 Save from Action / [EntryUnit] New action to [ModuleInstanceUnit] Assign Action
To User

 View
Actions
History

from Users list / [PowerIndexUnit] Users to [ModuleInstanceUnit] Set User
Selected

 View
Rewards
History

from Users list / [PowerIndexUnit] Users to [ModuleInstanceUnit] Set User
Selected

8.4.2..5 Outgoing Flow Summary
 OKFlow115 from [ModuleInstanceUnit] Remove User Action

Instance
to Actions History

 OKFlow150 from [ModuleInstanceUnit] On Change User
Reward

to Reward / [EntryUnit] New Reward

 OKFlow172 from [ModuleInstanceUnit] Assign Reward To
User

to Rewards History /
[PowerIndexUnit] Rewards

 OKFlow177 from [ModuleInstanceUnit] Set User Selected to Rewards History /
[PowerIndexUnit] Rewards

 OKFlow223 from [ModuleInstanceUnit] Assign Action To
User

to Actions History / [PowerIndexUnit]
Actions

 OKFlow229 from [ModuleInstanceUnit] OnChange User
Action Type

to Action / [EntryUnit] New action

 OKFlow33 from [ModuleInstanceUnit] Set User Selected to Actions History / [PowerIndexUnit]
Actions

 OKFlow98 from [ModuleInstanceUnit] Delete Community
User

to Users list

 KOFlow35 from [ModuleInstanceUnit] Assign Reward To
User

to Error

[Page] Action

SmartH2O-Platform Architecture and Design Page 120 D6.2 Version3.2

8.4.2..1 Component Summary
 [SelectorUnit] All action type

 [EntryUnit] New action

8.4.2..2 Incoming Flow Summary
 Assign new action from Actions History to [EntryUnit] New action

 OKFlow229 from Community Users Area /
[ModuleInstanceUnit] OnChange User Action Type

to [EntryUnit] New action

8.4.2..3 Outgoing Flow Summary
 Back from [EntryUnit] New action to Actions History

 Flow97 from [EntryUnit] New action to Community Users Area / [ModuleInstanceUnit] OnChange
User Action Type

 Save from [EntryUnit] New action to Community Users Area / [ModuleInstanceUnit] Assign
Action To User

[Page] Actions History

8.4.2..1 Component Summary
 [PowerIndexUnit] Actions

 [SelectorUnit] get area

 [SelectorUnit] get name

 [GetUnit] get user

 [EntryUnit] Search

 [DataUnit] User

SmartH2O-Platform Architecture and Design Page 121 D6.2 Version3.2

8.4.2..2 Incoming Flow Summary
 Back from Action / [EntryUnit] New action to Actions History

 OKFlow115 from Community Users Area /
[ModuleInstanceUnit] Remove User Action Instance

to Actions History

 OKFlow223 from Community Users Area /
[ModuleInstanceUnit] Assign Action To User

to [PowerIndexUnit] Actions

 OKFlow33 from Community Users Area /
[ModuleInstanceUnit] Set User Selected

to [PowerIndexUnit] Actions

8.4.2..3 Outgoing Flow Summary
 Assign new action from Actions History to Action / [EntryUnit] New action

 Back from Actions History to Users list / [PowerIndexUnit] Users

 Delete from [PowerIndexUnit] Actions to Community Users Area / [ModuleInstanceUnit]
Remove User Action Instance

8.4.2..4 Internal Flow Summary
 Flow120 from [EntryUnit] Search to [PowerIndexUnit] Actions

 Flow122 from [EntryUnit] Search to [PowerIndexUnit] Actions

 Search from [EntryUnit] Search to [PowerIndexUnit] Actions

[Page] Error

8.4.2..1 Component Summary
 [MultiMessageUnit] Attention

8.4.2..2 Incoming Flow Summary
 KOFlow35 from Community Users Area / [ModuleInstanceUnit] Assign Reward To

User
to Error

8.4.2..3 Outgoing Flow Summary
 Back from Error to Reward

SmartH2O-Platform Architecture and Design Page 122 D6.2 Version3.2

[Page] Reward

8.4.2..1 ConditionExpression Summary
 disable language

8.4.2..2 Component Summary
 [SelectorUnit] All rewards

 [GetUnit] get user

 [SelectorUnit] get user language

 [EntryUnit] New Reward

8.4.2..3 Incoming Flow Summary
 Assign new reward from Rewards History to Reward

 Back from Error to Reward

 OKFlow150 from Community Users Area /
[ModuleInstanceUnit] On Change User Reward

to [EntryUnit] New Reward

8.4.2..4

8.4.2..5 Outgoing Flow Summary
 Back from [EntryUnit] New Reward to Rewards History

 OnChange User
Reward

from [EntryUnit] New Reward to Community Users Area / [ModuleInstanceUnit]
On Change User Reward

 Save from [EntryUnit] New Reward to Community Users Area / [ModuleInstanceUnit]
Assign Reward To User

SmartH2O-Platform Architecture and Design Page 123 D6.2 Version3.2

[Page] Rewards History

8.4.2..1 ConditionExpression Summary
 disable language

8.4.2..2 Component Summary
 [SelectorUnit] get name

 [GetUnit] get user

 [SelectorUnit] get user language

 [PowerIndexUnit] Rewards

 [EntryUnit] Search

8.4.2..3 Incoming Flow Summary
 Back from Reward / [EntryUnit] New Reward to Rewards History

 OKFlow172 from Community Users Area /
[ModuleInstanceUnit] Assign Reward To User

to [PowerIndexUnit] Rewards

 OKFlow177 from Community Users Area /
[ModuleInstanceUnit] Set User Selected

to [PowerIndexUnit] Rewards

8.4.2..4 Outgoing Flow Summary
 Assign new reward from Rewards History to Reward

 Back from Rewards History to Users list / [PowerIndexUnit] Users

8.4.2..5 Internal Flow Summary
 Flow127 from [EntryUnit] Search to [PowerIndexUnit] Rewards

 Search from [EntryUnit] Search to [PowerIndexUnit] Rewards

SmartH2O-Platform Architecture and Design Page 124 D6.2 Version3.2

[Page] Users list

8.4.2..1 Component Summary
 [EntryUnit] Search

 [PowerIndexUnit] Users

8.4.2..2 Incoming Flow Summary
 Back from Actions History to [PowerIndexUnit] Users

 Back from Rewards History to [PowerIndexUnit] Users

 OKFlow98 from Community Users Area / [ModuleInstanceUnit]
Delete Community User

to Users list

8.4.2..3 Outgoing Flow Summary
 Delete from [PowerIndexUnit] Users to Community Users Area /

[ModuleInstanceUnit] Delete Community User

 View Actions History from [PowerIndexUnit] Users to Community Users Area /
[ModuleInstanceUnit] Set User Selected

 View Rewards History from [PowerIndexUnit] Users to Community Users Area /
[ModuleInstanceUnit] Set User Selected

8.4.2..4 Internal Flow Summary
 Search from [EntryUnit] Search to [PowerIndexUnit] Users

SmartH2O-Platform Architecture and Design Page 125 D6.2 Version3.2

[Area] Gamification Area

8.4.2..1 Page Summary
 Attention

 Manage Action

 Manage Actions

 Manage Badge

 Manage Badge Area

 Manage Gamified Application

 Manage Goal

 Manage Thematic Area

 Modify Badge

 Modify Badge Area

 New Badge

 New Badge Area

 New Gamified Application

 New Goal

 New Thematic Area

 Sort Badges Area

SmartH2O-Platform Architecture and Design Page 126 D6.2 Version3.2

8.4.2..2 Component Summary
 [ModuleInstanceUnit] Add Action To Badge

 [ModuleInstanceUnit] Add New Gamified Application

 [ModuleInstanceUnit] Create Action Type

 [ModuleInstanceUnit] Create Badge Area

 [ModuleInstanceUnit] Create Goal

 [ModuleInstanceUnit] Create New Badge

 [ModuleInstanceUnit] Create Thematic Area

 [ModuleInstanceUnit] Delete Action From Badge

 [ModuleInstanceUnit] Delete Action Type

 [ModuleInstanceUnit] Delete All The Associated Actions

 [ModuleInstanceUnit] Delete Badge

 [ModuleInstanceUnit] Delete Gamified Application

 [ModuleInstanceUnit] Delete Goal

 [ModuleInstanceUnit] Delete Thematic Area

 [ModuleInstanceUnit] Edit Gamified Application

 [ModuleInstanceUnit] Edit Thematic Area

 [ModuleInstanceUnit] Modify Action Type

 [ModuleInstanceUnit] Modify Badge

 [ModuleInstanceUnit] Modify Badge Area

 [ModuleInstanceUnit] Modify Badge Sorting

8.4.2..3 Landmark Summary
 Gamification Area

 Manage Action

 Manage Badge

 Manage Badge Area

 Manage Gamified Application

 Manage Goal

 Manage Thematic Area

8.4.2..4 Incoming Flow Summary
 Add from Manage Actions / [MultiChoiceIndexUnit] All

Reputation Actions
to [ModuleInstanceUnit] Add Action To
Badge

 Add
Action

from Manage Action to [ModuleInstanceUnit] Create Action
Type

 Delete from Manage Actions / [PowerIndexUnit] Involved
Actions Associated

to [ModuleInstanceUnit] Delete Action
From Badge

 Delete from Manage Thematic Area / [PowerIndexUnit]
Thematic Area

to [ModuleInstanceUnit] Delete
Thematic Area

 Delete from Manage Badge / [PowerIndexUnit] List of
Badges

to [ModuleInstanceUnit] Delete Badge

SmartH2O-Platform Architecture and Design Page 127 D6.2 Version3.2

 Delete from Manage Gamified Application /
[PowerIndexUnit] List of Gamified Applications

to [ModuleInstanceUnit] Delete
Gamified Application

 Delete from Manage Goal / [PowerIndexUnit] List of
Goals

to [ModuleInstanceUnit] Delete Goal

 Delete from Manage Action / [PowerIndexUnit] List of
Actions

to [ModuleInstanceUnit] Delete Action
Type

 Delete All from Manage Actions / [DataUnit] Badge
Selected

to [ModuleInstanceUnit] Delete All The
Associated Actions

 Modify from Manage Thematic Area / [PowerIndexUnit]
Thematic Area

to [ModuleInstanceUnit] Edit Thematic
Area

 Modify from Manage Gamified Application /
[PowerIndexUnit] List of Gamified Applications

to [ModuleInstanceUnit] Edit Gamified
Application

 Modify from Manage Action / [PowerIndexUnit] List of
Actions

to [ModuleInstanceUnit] Modify Action
Type

 Save from New Gamified Application / [EntryUnit] New
Gamified Application

to [ModuleInstanceUnit] Add New
Gamified Application

 Save from New Badge / [EntryUnit] New Badge to [ModuleInstanceUnit] Create New
Badge

 Save from New Goal / [EntryUnit] Goal to [ModuleInstanceUnit] Create Goal

 Save from New Thematic Area / [EntryUnit] Thematic
Area

to [ModuleInstanceUnit] Create
Thematic Area

 Save from New Badge Area / [EntryUnit] New to [ModuleInstanceUnit] Create Badge
Area

 Update from Sort Badges Area / [MultiEntryUnit] Choose
the Display Sorting

to [ModuleInstanceUnit] Modify Badge
Sorting

 Update from Modify Badge Area / [EntryUnit] Modify to [ModuleInstanceUnit] Modify Badge
Area

 Update from Modify Badge / [EntryUnit] Modify Badge to [ModuleInstanceUnit] Modify Badge

8.4.2..5 Outgoing Flow Summary
 Back from [ModuleInstanceUnit] Edit Thematic Area to Manage Thematic Area /

[PowerIndexUnit] Thematic Area

 Back from [ModuleInstanceUnit] Edit Gamified
Application

to Manage Gamified Application

 OKFlow101 from [ModuleInstanceUnit] Create Action Type to Manage Action

 OKFlow106 from [ModuleInstanceUnit] Modify Action Type to Manage Action / [PowerIndexUnit]
List of Actions

 OKFlow112 from [ModuleInstanceUnit] Create Thematic Area to Manage Thematic Area

 OKFlow12 from [ModuleInstanceUnit] Delete Goal to Manage Goal / [PowerIndexUnit]
List of Goals

 OKFlow124 from [ModuleInstanceUnit] Delete Thematic Area to Attention

 OKFlow153 from [ModuleInstanceUnit] Delete Gamified
Application

to Manage Gamified Application

 OKFlow157 from [ModuleInstanceUnit] Delete Thematic Area to Manage Thematic Area

 OKFlow307 from [ModuleInstanceUnit] Create Badge Area to Manage Badge Area /
[PowerIndexUnit] List of Badge Areas

SmartH2O-Platform Architecture and Design Page 128 D6.2 Version3.2

 OKFlow311 from [ModuleInstanceUnit] Modify Badge Area to Manage Badge Area /
[PowerIndexUnit] List of Badge Areas

 OKFlow318 from [ModuleInstanceUnit] Delete Badge to Manage Badge /
[PowerIndexUnit] List of Badges

 OKFlow321 from [ModuleInstanceUnit] Modify Badge Sorting to Manage Badge /
[PowerIndexUnit] List of Badges

 OKFlow327 from [ModuleInstanceUnit] Create New Badge to Manage Badge /
[PowerIndexUnit] List of Badges

 OKFlow334 from [ModuleInstanceUnit] Modify Badge to Manage Badge /
[PowerIndexUnit] List of Badges

 OKFlow338 from [ModuleInstanceUnit] Delete All The
Associated Actions

to Manage Actions

 OKFlow341 from [ModuleInstanceUnit] Add Action To Badge to Manage Actions

 OKFlow344 from [ModuleInstanceUnit] Delete Action From
Badge

to Manage Actions

 OKFlow42 from [ModuleInstanceUnit] Add New Gamified
Application

to Manage Gamified Application

 OKFlow5 from [ModuleInstanceUnit] Create Goal to Manage Goal

 OKFlow84 from [ModuleInstanceUnit] Delete Action Type to Manage Action

 KOFlow41 from [ModuleInstanceUnit] Delete Action Type to Manage Action

[Page] Attention

8.4.2..1 Component Summary
 [MultiMessageUnit] Attention

 [NoOpContentUnit] Button

8.4.2..2

8.4.2..3 Incoming Flow Summary
 OKFlow124 from Gamification Area / [ModuleInstanceUnit] Delete Thematic Area to Attention

8.4.2..4 Outgoing Flow Summary
 Ok from [NoOpContentUnit] Button to Manage Thematic Area

SmartH2O-Platform Architecture and Design Page 129 D6.2 Version3.2

[Page] Manage Action

8.4.2..1 Component Summary
 [PowerIndexUnit] List of Actions

 [IndexUnit] Type of Action

8.4.2..2 Landmark Summary
 Manage Action

8.4.2..3 Incoming Flow Summary
 OKFlow101 from Gamification Area / [ModuleInstanceUnit]

Create Action Type
to Manage Action

 OKFlow106 from Gamification Area / [ModuleInstanceUnit]
Modify Action Type

to [PowerIndexUnit] List of Actions

 OKFlow84 from Gamification Area / [ModuleInstanceUnit]
Delete Action Type

to Manage Action

 KOFlow41 from Gamification Area / [ModuleInstanceUnit]
Delete Action Type

to Manage Action

8.4.2..4 Outgoing Flow Summary
 Add Action from Manage Action to Gamification Area / [ModuleInstanceUnit]

Create Action Type

 Delete from [PowerIndexUnit] List of Actions to Gamification Area / [ModuleInstanceUnit]
Delete Action Type

 Modify from [PowerIndexUnit] List of Actions to Gamification Area / [ModuleInstanceUnit]
Modify Action Type

8.4.2..5 Internal Flow Summary
 Link11 from [IndexUnit] Type of Action to [PowerIndexUnit] List of Actions

SmartH2O-Platform Architecture and Design Page 130 D6.2 Version3.2

[Page] Manage Actions

8.4.2..1 ConditionExpression Summary
 DeleteAll

8.4.2..2 Component Summary
 [SelectorUnit] Actions Already Selected

 [MultiChoiceIndexUnit] All Reputation Actions

 [DataUnit] Badge Selected

 [PowerIndexUnit] Involved Actions Associated

 [ScrollerUnit] Scrool Actions

 [SelectorUnit] Select Badge

 [IndexUnit] Type of Action

8.4.2..3 Variable Summary
 ActionsAssociated

 area

 score

 title

8.4.2..4 Incoming Flow Summary

SmartH2O-Platform Architecture and Design Page 131 D6.2 Version3.2

 Manage
actions

from Manage Badge / [PowerIndexUnit] List of
Badges

to [SelectorUnit] Select Badge

 OKFlow338 from Gamification Area / [ModuleInstanceUnit]
Delete All The Associated Actions

to Manage Actions

 OKFlow341 from Gamification Area / [ModuleInstanceUnit]
Add Action To Badge

to Manage Actions

 OKFlow344 from Gamification Area / [ModuleInstanceUnit]
Delete Action From Badge

to Manage Actions

8.4.2..5 Outgoing Flow Summary
 Add from [MultiChoiceIndexUnit] All Reputation Actions to Gamification Area /

[ModuleInstanceUnit] Add Action To
Badge

 Back from [DataUnit] Badge Selected to Manage Badge /
[PowerIndexUnit] List of Badges

 Delete from [PowerIndexUnit] Involved Actions Associated to Gamification Area /
[ModuleInstanceUnit] Delete Action From
Badge

 Delete All from [DataUnit] Badge Selected to Gamification Area /
[ModuleInstanceUnit] Delete All The
Associated Actions

8.4.2..6 Internal Flow Summary
 Link11 from [IndexUnit] Type of Action to [ScrollerUnit] Scrool Actions

 Link206 from [ScrollerUnit] Scrool Actions to [MultiChoiceIndexUnit] All Reputation Actions

[Page] Manage Badge

SmartH2O-Platform Architecture and Design Page 132 D6.2 Version3.2

8.4.2..1 ConditionExpression Summary
 area

8.4.2..2 Component Summary
 [PowerIndexUnit] List of Badges

 [IndexUnit] Type of Badge

8.4.2..3

8.4.2..4 Variable Summary
 type

8.4.2..5 Landmark Summary
 Manage Badge

8.4.2..6 Incoming Flow Summary
 Back from New Badge / [EntryUnit] New Badge to [PowerIndexUnit] List of Badges

 Back from Sort Badges Area / [MultiEntryUnit] Choose
the Display Sorting

to [PowerIndexUnit] List of Badges

 Back from Modify Badge / [EntryUnit] Modify Badge to [PowerIndexUnit] List of Badges

 Back from Manage Actions / [DataUnit] Badge
Selected

to [PowerIndexUnit] List of Badges

 OKFlow318 from Gamification Area / [ModuleInstanceUnit]
Delete Badge

to [PowerIndexUnit] List of Badges

 OKFlow321 from Gamification Area / [ModuleInstanceUnit]
Modify Badge Sorting

to [PowerIndexUnit] List of Badges

 OKFlow327 from Gamification Area / [ModuleInstanceUnit]
Create New Badge

to [PowerIndexUnit] List of Badges

 OKFlow334 from Gamification Area / [ModuleInstanceUnit]
Modify Badge

to [PowerIndexUnit] List of Badges

8.4.2..7 Outgoing Flow Summary
 Add Badge from Manage Badge to New Badge / [EntryUnit] New

Badge

 Choose the Display
Sorting

from Manage Badge to Sort Badges Area /
[MultiEntryUnit] Choose the Display
Sorting

 Delete from [PowerIndexUnit] List of Badges to Gamification Area /
[ModuleInstanceUnit] Delete Badge

 Manage actions from [PowerIndexUnit] List of Badges to Manage Actions / [SelectorUnit]
Select Badge

 Modify from [PowerIndexUnit] List of Badges to Modify Badge / [SelectorUnit]
Select Badge

SmartH2O-Platform Architecture and Design Page 133 D6.2 Version3.2

8.4.2..8 Internal Flow Summary
 Link11 from [IndexUnit] Type of Badge to [PowerIndexUnit] List of Badges

[Page] Manage Badge Area

8.4.2..1 Component Summary
 [PowerIndexUnit] List of Badge Areas

 [IndexUnit] Type of Action

8.4.2..2 Landmark Summary
 Manage Badge Area

8.4.2..3 Incoming Flow Summary
 Back from Modify Badge Area / [EntryUnit] Modify to [PowerIndexUnit] List of Badge

Areas

 Back from New Badge Area / [EntryUnit] New to Manage Badge Area

 OKFlow307 from Gamification Area /
[ModuleInstanceUnit] Create Badge Area

to [PowerIndexUnit] List of Badge
Areas

 OKFlow311 from Gamification Area /
[ModuleInstanceUnit] Modify Badge Area

to [PowerIndexUnit] List of Badge
Areas

8.4.2..4 Outgoing Flow Summary
 Add Area from Manage Badge Area to New Badge Area

 Modify from [PowerIndexUnit] List of Badge Areas to Modify Badge Area / [EntryUnit] Modify

8.4.2..5 Internal Flow Summary
 Flow171 from [IndexUnit] Type of Action to [PowerIndexUnit] List of Badge Areas

[Page] Manage Gamified Application

SmartH2O-Platform Architecture and Design Page 134 D6.2 Version3.2

8.4.2..1 Component Summary
 [PowerIndexUnit] List of Gamified Applications

8.4.2..2 Landmark Summary
 Manage Gamified Application

8.4.2..3

8.4.2..4 Incoming Flow Summary
 Back from New Gamified Application / [EntryUnit] New

Gamified Application
to Manage Gamified Application

 Back from Gamification Area / [ModuleInstanceUnit] Edit
Gamified Application

to Manage Gamified Application

 OKFlow153 from Gamification Area / [ModuleInstanceUnit]
Delete Gamified Application

to Manage Gamified Application

 OKFlow42 from Gamification Area / [ModuleInstanceUnit] Add
New Gamified Application

to Manage Gamified Application

8.4.2..5 Outgoing Flow Summary
 Add Gamified

Application
from Manage Gamified Application to New Gamified Application

 Delete from [PowerIndexUnit] List of Gamified
Applications

to Gamification Area /
[ModuleInstanceUnit] Delete Gamified
Application

 Modify from [PowerIndexUnit] List of Gamified
Applications

to Gamification Area /
[ModuleInstanceUnit] Edit Gamified
Application

[Page] Manage Goal

8.4.2..1 Component Summary
 [PowerIndexUnit] List of Goals

8.4.2..2 Landmark Summary
 Manage Goal

8.4.2..3 Incoming Flow Summary
 Back from New Goal / [EntryUnit] Goal to Manage Goal

SmartH2O-Platform Architecture and Design Page 135 D6.2 Version3.2

 OKFlow12 from Gamification Area / [ModuleInstanceUnit] Delete
Goal

to [PowerIndexUnit] List of
Goals

 OKFlow5 from Gamification Area / [ModuleInstanceUnit] Create
Goal

to Manage Goal

8.4.2..4 Outgoing Flow Summary
 Delete from [PowerIndexUnit] List of Goals to Gamification Area / [ModuleInstanceUnit] Delete

Goal

 New Goal from Manage Goal to New Goal

[Page] Manage Thematic Area

8.4.2..1 Component Summary
 [PowerIndexUnit] Thematic Area

8.4.2..2 Landmark Summary
 Manage Thematic Area

8.4.2..3 Incoming Flow Summary
 Back from New Thematic Area / [EntryUnit] Thematic

Area
to Manage Thematic Area

 Ok from Attention / [NoOpContentUnit] Button to Manage Thematic Area

 Back from Gamification Area / [ModuleInstanceUnit]
Edit Thematic Area

to [PowerIndexUnit] Thematic Area

 OKFlow112 from Gamification Area / [ModuleInstanceUnit]
Create Thematic Area

to Manage Thematic Area

 OKFlow157 from Gamification Area / [ModuleInstanceUnit]
Delete Thematic Area

to Manage Thematic Area

8.4.2..4 Outgoing Flow Summary
 Delete from [PowerIndexUnit] Thematic Area to Gamification Area /

[ModuleInstanceUnit] Delete Thematic
Area

 Modify from [PowerIndexUnit] Thematic Area to Gamification Area /
[ModuleInstanceUnit] Edit Thematic Area

 New Thematic Area from Manage Thematic Area to New Thematic Area

SmartH2O-Platform Architecture and Design Page 136 D6.2 Version3.2

[Page] Modify Badge

8.4.2..1 Component Summary
 [EntryUnit] Modify Badge

 [SelectorUnit] Select Badge

8.4.2..2 Incoming Flow Summary
 Modify from Manage Badge / [PowerIndexUnit] List of Badges to [SelectorUnit] Select Badge

8.4.2..3 Outgoing Flow Summary
 Back from [EntryUnit] Modify Badge to Manage Badge / [PowerIndexUnit] List of Badges

 Update from [EntryUnit] Modify Badge to Gamification Area / [ModuleInstanceUnit] Modify
Badge

[Page] Modify Badge Area

8.4.2..1 Component Summary
 [EntryUnit] Modify

8.4.2..2 Incoming Flow Summary
 Modify from Manage Badge Area / [PowerIndexUnit] List of Badge Areas to [EntryUnit] Modify

8.4.2..3 Outgoing Flow Summary
 Back from [EntryUnit] Modify to Manage Badge Area / [PowerIndexUnit] List of Badge Areas

 Update from [EntryUnit] Modify to Gamification Area / [ModuleInstanceUnit] Modify Badge Area

SmartH2O-Platform Architecture and Design Page 137 D6.2 Version3.2

[Page] New Badge

8.4.2..1 Component Summary
 [EntryUnit] New Badge

 [SelectorUnit] Select Badges

8.4.2..2 Incoming Flow Summary
 Add Badge from Manage Badge to [EntryUnit] New Badge

8.4.2..3 Outgoing Flow Summary
 Back from [EntryUnit] New Badge to Manage Badge / [PowerIndexUnit] List of Badges

 Save from [EntryUnit] New Badge to Gamification Area / [ModuleInstanceUnit] Create New Badge

[Page] New Badge Area

8.4.2..1 Component Summary
 [SelectorUnit] Area

 [EntryUnit] New

8.4.2..2 Incoming Flow Summary
 Add Area from Manage Badge Area to New Badge Area

8.4.2..3 Outgoing Flow Summary
 Back from [EntryUnit] New to Manage Badge Area

 Save from [EntryUnit] New to Gamification Area / [ModuleInstanceUnit] Create Badge Area

SmartH2O-Platform Architecture and Design Page 138 D6.2 Version3.2

[Page] New Gamified Application

8.4.2..1 Component Summary
 [SelectorUnit] Area

 [EntryUnit] New Gamified Application

8.4.2..2 Incoming Flow Summary
 Add Gamified Application from Manage Gamified Application to New Gamified Application

8.4.2..3 Outgoing Flow Summary
 Back from [EntryUnit] New Gamified Application to Manage Gamified Application

 Save from [EntryUnit] New Gamified Application to Gamification Area / [ModuleInstanceUnit] Add
New Gamified Application

[Page] New Goal

8.4.2..1 Component Summary
 [SelectorUnit] Badges

 [EntryUnit] Goal

 [SelectorUnit] User

8.4.2..2 Incoming Flow Summary
 New Goal from Manage Goal to New Goal

8.4.2..3 Outgoing Flow Summary
 Back from [EntryUnit] Goal to Manage Goal

SmartH2O-Platform Architecture and Design Page 139 D6.2 Version3.2

 Save from [EntryUnit] Goal to Gamification Area / [ModuleInstanceUnit] Create Goal

[Page] New Thematic Area

8.4.2..1 Component Summary
 [SelectorUnit] Area

 [EntryUnit] Thematic Area

8.4.2..2 Incoming Flow Summary
 New Thematic Area from Manage Thematic Area to New Thematic Area

8.4.2..3 Outgoing Flow Summary
 Back from [EntryUnit] Thematic Area to Manage Thematic Area

 Save from [EntryUnit] Thematic Area to Gamification Area / [ModuleInstanceUnit] Create
Thematic Area

[Page] Sort Badges Area

8.4.2..1 Component Summary
 [MultiEntryUnit] Choose the Display Sorting

 [SelectorUnit] Select Badges

8.4.2..2 Incoming Flow Summary
 Choose the Display Sorting from Manage Badge to [MultiEntryUnit] Choose the Display Sorting

8.4.2..3 Outgoing Flow Summary

SmartH2O-Platform Architecture and Design Page 140 D6.2 Version3.2

 Back from [MultiEntryUnit] Choose the Display
Sorting

to Manage Badge / [PowerIndexUnit] List
of Badges

 Update from [MultiEntryUnit] Choose the Display
Sorting

to Gamification Area /
[ModuleInstanceUnit] Modify Badge Sorting

[Area] Notification Area

8.4.2..1 Page Summary
 Attention

 Edit Container

 Edit Mail

 Manage Containers

 New Container

 Notification Events

 Notification Preview

 Text Mail

8.4.2..2 Component Summary
 [ModuleInstanceUnit] Create Container

 [ModuleInstanceUnit] Delete Container

 [ModuleInstanceUnit] Email Preview

 [ModuleInstanceUnit] OnChange NoOp

 [ModuleInstanceUnit] OnChange NoOp

 [ModuleInstanceUnit] Update Container

 [ModuleInstanceUnit] Update Email Text

8.4.2..3 Landmark Summary

SmartH2O-Platform Architecture and Design Page 141 D6.2 Version3.2

 Notification Area

 Manage Containers

 Notification Events

 Text Mail

8.4.2..4 Incoming Flow Summary
 Delete from Manage Containers / [PowerIndexUnit]

Containers
to [ModuleInstanceUnit] Delete
Container

 Flow42 from Manage Containers / [EntryUnit] Language to [ModuleInstanceUnit] OnChange
NoOp

 Flow42 from Text Mail / [EntryUnit] Language to [ModuleInstanceUnit] OnChange
NoOp

 Preview from Text Mail / [PowerIndexUnit] Mails to [ModuleInstanceUnit] Email Preview

 Save from Edit Container / [EntryUnit] Container to [ModuleInstanceUnit] Update
Container

 Save from New Container / [EntryUnit] Container to [ModuleInstanceUnit] Create
Container

 Save from Edit Mail / [EntryUnit] Mail to [ModuleInstanceUnit] Update Email
Text

8.4.2..5 Outgoing Flow Summary
 OKFlow104 from [ModuleInstanceUnit] OnChange NoOp to Manage Containers

 OKFlow104 from [ModuleInstanceUnit] OnChange NoOp to Text Mail

 OKFlow364 from [ModuleInstanceUnit] Email Preview to Notification Preview /
[MultiMessageUnit] mail template

 OKFlow376 from [ModuleInstanceUnit] Delete Container to Manage Containers

 OKFlow379 from [ModuleInstanceUnit] Update Container to Manage Containers /
[PowerIndexUnit] Containers

 OKFlow383 from [ModuleInstanceUnit] Create Container to Manage Containers /
[PowerIndexUnit] Containers

 OKFlow98 from [ModuleInstanceUnit] Update Email Text to Text Mail / [PowerIndexUnit] Mails

 KOFlow101 from [ModuleInstanceUnit] Email Preview to Notification Preview /
[MultiMessageUnit] mail template

 KOFlow109 from [ModuleInstanceUnit] Delete Container to Attention

[Page] Attention

8.4.2..1 Component Summary
 [MultiMessageUnit] Error

SmartH2O-Platform Architecture and Design Page 142 D6.2 Version3.2

8.4.2..2 Incoming Flow Summary
 KOFlow109 from Notification Area / [ModuleInstanceUnit] Delete Container to Attention

8.4.2..3 Outgoing Flow Summary
 Ok from [MultiMessageUnit] Error to Manage Containers

[Page] Edit Container

8.4.2..1 Component Summary
 [EntryUnit] Container

8.4.2..2 Incoming Flow Summary
 Modify from Manage Containers / [PowerIndexUnit] Containers to [EntryUnit] Container

8.4.2..3 Outgoing Flow Summary
 Back from [EntryUnit] Container to Manage Containers / [PowerIndexUnit] Containers

 Save from [EntryUnit] Container to Notification Area / [ModuleInstanceUnit] Update Container

[Page] Edit Mail

8.4.2..1 Component Summary
 [SelectorUnit] get containers

 [EntryUnit] Mail

 [SelectorUnit] Text Email

8.4.2..2 Incoming Flow Summary
 Modify from Text Mail / [PowerIndexUnit] Mails to [SelectorUnit] Text Email

SmartH2O-Platform Architecture and Design Page 143 D6.2 Version3.2

8.4.2..3 Outgoing Flow Summary
 Back from [EntryUnit] Mail to Text Mail / [PowerIndexUnit] Mails

 Save from [EntryUnit] Mail to Notification Area / [ModuleInstanceUnit] Update Email Text

[Page] Manage Containers

8.4.2..1 Component Summary
 [PowerIndexUnit] Containers

 [EntryUnit] Language

8.4.2..2 Landmark Summary
 Manage Containers

SmartH2O-Platform Architecture and Design Page 144 D6.2 Version3.2

8.4.2..3 Incoming Flow Summary
 Back from New Container / [EntryUnit]

Container
to [PowerIndexUnit] Containers

 Back from Edit Container / [EntryUnit]
Container

to [PowerIndexUnit] Containers

 Ok from Attention / [MultiMessageUnit] Error to Manage Containers

 OKFlow104 from Notification Area /
[ModuleInstanceUnit] OnChange NoOp

to Manage Containers

 OKFlow376 from Notification Area /
[ModuleInstanceUnit] Delete Container

to Manage Containers

 OKFlow379 from Notification Area /
[ModuleInstanceUnit] Update Container

to [PowerIndexUnit] Containers

 OKFlow383 from Notification Area /
[ModuleInstanceUnit] Create Container

to [PowerIndexUnit] Containers

8.4.2..4 Outgoing Flow Summary
 Add container from Manage Containers to New Container

 Delete from [PowerIndexUnit] Containers to Notification Area / [ModuleInstanceUnit]
Delete Container

 Flow42 from [EntryUnit] Language to Notification Area / [ModuleInstanceUnit]
OnChange NoOp

 Modify from [PowerIndexUnit] Containers to Edit Container / [EntryUnit] Container

[Page] New Container

8.4.2..1 Component Summary
 [EntryUnit] Container

8.4.2..2 Incoming Flow Summary
 Add container from Manage Containers to New Container

8.4.2..3 Outgoing Flow Summary
 Back from [EntryUnit] Container to Manage Containers / [PowerIndexUnit] Containers

 Save from [EntryUnit] Container to Notification Area / [ModuleInstanceUnit] Create Container

SmartH2O-Platform Architecture and Design Page 145 D6.2 Version3.2

[Page] Notification Events

8.4.2..1 Component Summary
 [PowerIndexUnit] Events

 [SelectorUnit] get status

 [SelectorUnit] get status

 [EntryUnit] Search

8.4.2..2 Landmark Summary
 Notification Events

8.4.2..3 Internal Flow Summary
 Flow143 from [EntryUnit] Search to [PowerIndexUnit] Events

 Flow148 from [EntryUnit] Search to [PowerIndexUnit] Events

 Search from [EntryUnit] Search to [PowerIndexUnit] Events

[Page] Notification Preview

8.4.2..1 Component Summary
 [MultiMessageUnit] mail template

8.4.2..2 Incoming Flow Summary
 OKFlow364 from Notification Area / [ModuleInstanceUnit]

Email Preview
to [MultiMessageUnit] mail template

 KOFlow101 from Notification Area / [ModuleInstanceUnit]
Email Preview

to [MultiMessageUnit] mail template

SmartH2O-Platform Architecture and Design Page 146 D6.2 Version3.2

[Page] Text Mail

8.4.2..1 Component Summary
 [EntryUnit] Language

 [PowerIndexUnit] Mails

8.4.2..2 Landmark Summary
 Text Mail

8.4.2..3 Incoming Flow Summary
 Back from Edit Mail / [EntryUnit] Mail to [PowerIndexUnit] Mails

 OKFlow104 from Notification Area / [ModuleInstanceUnit]
OnChange NoOp

to Text Mail

 OKFlow98 from Notification Area / [ModuleInstanceUnit] Update
Email Text

to [PowerIndexUnit] Mails

8.4.2..4 Outgoing Flow Summary
 Flow42 from [EntryUnit] Language to Notification Area / [ModuleInstanceUnit] OnChange

NoOp

 Modify from [PowerIndexUnit] Mails to Edit Mail / [SelectorUnit] Text Email

 Preview from [PowerIndexUnit] Mails to Notification Area / [ModuleInstanceUnit] Email Preview

SmartH2O-Platform Architecture and Design Page 147 D6.2 Version3.2

[Area] Rewards Area

8.4.2..1 Page Summary
 Add reward

 Edit reward

 Manage Rewards

8.4.2..2 Component Summary
 [ModuleInstanceUnit] Create New Reward

 [ModuleInstanceUnit] Modify Reward

 [ModuleInstanceUnit] OnChange NoOp

8.4.2..3 Landmark Summary
 Rewards Area

 Manage Rewards

8.4.2..4 Incoming Flow Summary
 Flow150 from Manage Rewards / [EntryUnit] Search to [ModuleInstanceUnit] OnChange NoOp

 Save from Add reward / [EntryUnit] New reward to [ModuleInstanceUnit] Create New Reward

 Save from Edit reward / [EntryUnit] Edit reward to [ModuleInstanceUnit] Modify Reward

8.4.2..5 Outgoing Flow Summary
 OKFlow114 from [ModuleInstanceUnit] OnChange NoOp to Manage Rewards

 OKFlow2 from [ModuleInstanceUnit] Create New Reward to Manage Rewards /
[PowerIndexUnit] Rewards

 OKFlow259 from [ModuleInstanceUnit] Modify Reward to Manage Rewards /

SmartH2O-Platform Architecture and Design Page 148 D6.2 Version3.2

[PowerIndexUnit] Rewards

[Page] Add reward

8.4.2..1 Component Summary
 [EntryUnit] New reward

8.4.2..2 Incoming Flow Summary
 Add reward from Manage Rewards to Add reward

8.4.2..3 Outgoing Flow Summary
 Back from [EntryUnit] New reward to Manage Rewards

 Save from [EntryUnit] New reward to Rewards Area / [ModuleInstanceUnit] Create New Reward

[Page] Edit reward

8.4.2..1 Component Summary
 [EntryUnit] Edit reward

8.4.2..2 Incoming Flow Summary
 Modify from Manage Rewards / [PowerIndexUnit] Rewards to [EntryUnit] Edit reward

8.4.2..3 Outgoing Flow Summary
 Back from [EntryUnit] Edit reward to Manage Rewards

 Save from [EntryUnit] Edit reward to Rewards Area / [ModuleInstanceUnit] Modify Reward

SmartH2O-Platform Architecture and Design Page 149 D6.2 Version3.2

[Page] Manage Rewards

8.4.2..1

8.4.2..2 Component Summary
 [PowerIndexUnit] Rewards

 [EntryUnit] Search

8.4.2..3 Landmark Summary
 Manage Rewards

8.4.2..4 Incoming Flow Summary
 Back from Add reward / [EntryUnit] New reward to Manage Rewards

 Back from Edit reward / [EntryUnit] Edit reward to Manage Rewards

 OKFlow114 from Rewards Area / [ModuleInstanceUnit]
OnChange NoOp

to Manage Rewards

 OKFlow2 from Rewards Area / [ModuleInstanceUnit]
Create New Reward

to [PowerIndexUnit] Rewards

 OKFlow259 from Rewards Area / [ModuleInstanceUnit]
Modify Reward

to [PowerIndexUnit] Rewards

8.4.2..5 Outgoing Flow Summary
 Add reward from Manage Rewards to Add reward

 Flow150 from [EntryUnit] Search to Rewards Area / [ModuleInstanceUnit] OnChange
NoOp

 Modify from [PowerIndexUnit] Rewards to Edit reward / [EntryUnit] Edit reward

8.4.2..6 Internal Flow Summary
 Search from [EntryUnit] Search to [PowerIndexUnit] Rewards

SmartH2O-Platform Architecture and Design Page 150 D6.2 Version3.2

[Area] Text Management Area

8.4.2..1 Page Summary
 Text Chunks

 Text Labels

8.4.2..2 Component Summary
 [ModuleInstanceUnit] Edit Text Chunk

 [ModuleInstanceUnit] Modify Bundle Data

 [ModuleInstanceUnit] OnChange NoOp

8.4.2..3

8.4.2..4 Landmark Summary
 Text Management Area

 Text Chunks

 Text Labels

8.4.2..5 Incoming Flow Summary
 Edit from Text Chunks / [PowerIndexUnit] Chunks to [ModuleInstanceUnit] Edit Text Chunk

 Flow42 from Text Chunks / [EntryUnit] Language to [ModuleInstanceUnit] OnChange NoOp

 Save from Text Labels / [MultiEntryUnit] Edit labels to [ModuleInstanceUnit] Modify Bundle Data

SmartH2O-Platform Architecture and Design Page 151 D6.2 Version3.2

8.4.2..6 Outgoing Flow Summary
 OKFlow134 from [ModuleInstanceUnit] Edit Text Chunk to Text Chunks / [EntryUnit]

Language

 OKFlow359 from [ModuleInstanceUnit] Modify Bundle Data to Text Labels / [ScrollerUnit] Labels

 OKFlow72 from [ModuleInstanceUnit] OnChange NoOp to Text Chunks

[Page] Text Chunks

8.4.2..1 Component Summary
 [PowerIndexUnit] Chunks

 [EntryUnit] Language

8.4.2..2 Landmark Summary
 Text Chunks

8.4.2..3 Incoming Flow Summary
 OKFlow134 from Text Management Area /

[ModuleInstanceUnit] Edit Text Chunk
to [EntryUnit] Language

 OKFlow72 from Text Management Area /
[ModuleInstanceUnit] OnChange NoOp

to Text Chunks

8.4.2..4 Outgoing Flow Summary
 Edit from [PowerIndexUnit] Chunks to Text Management Area / [ModuleInstanceUnit] Edit

Text Chunk

 Flow42 from [EntryUnit] Language to Text Management Area / [ModuleInstanceUnit]
OnChange NoOp

[Page] Text Labels

SmartH2O-Platform Architecture and Design Page 152 D6.2 Version3.2

8.4.2..1 Component Summary
 [MultiEntryUnit] Edit labels

 [ScrollerUnit] Labels

 [EntryUnit] Search

8.4.2..2 Landmark Summary
 Text Labels

8.4.2..3 Incoming Flow Summary
 OKFlow359 from Text Management Area / [ModuleInstanceUnit] Modify

Bundle Data
to [ScrollerUnit] Labels

8.4.2..4 Outgoing Flow Summary
 Save from [MultiEntryUnit] Edit labels to Text Management Area / [ModuleInstanceUnit] Modify

Bundle Data

8.4.2..5 Internal Flow Summary
 Flow64 from [EntryUnit] Search to [ScrollerUnit] Labels

 Flow65 from [ScrollerUnit] Labels to [MultiEntryUnit] Edit labels

 Search from [EntryUnit] Search to [ScrollerUnit] Labels

SmartH2O-Platform Architecture and Design Page 153 D6.2 Version3.2

[MasterPage] UserProfile

8.4.2..1 Component Summary
 [GetUnit] Get Username

 [DataUnit] Welcome

8.4.2..2 Outgoing Flow Summary
 Logout from [DataUnit] Welcome to Administration / [ModuleInstanceUnit] Logout

8.4.3 Statistics
Structure

 Entity 28(4 derived)(5 volatile)

 Attribute 168(5 derived)

 Attribute per Entity 6(0 derived)

 Relationship 22(1 derived)

 Relationship per Entity 0(0 derived)

Navigation

 Site View 4

 Service View 5

 Module View 1

 Context Parameter 13

 Area 12

 Area per Site View 3

 Page 64

 Page per Site View 16

 Master Page 4

 Operation Group 43

 Operation Group per View 4

 Port 19

 Job 2

 Content Module 0

 Operation Module 65

SmartH2O-Platform Architecture and Design Page 154 D6.2 Version3.2

 Hybrid Module 8

Content Units

Content Units 218

Content Components per Site View 54

Content Components per Page 3

 Details 26

 Form 33

 Get 25

 Hierarchy 16

 Simple List 5

 Input Port 2

 Module 3

 Checkable List 1

 Multiple Details 6

 Multiple Form 2

 Message 13

 View Component 8

 Output Port 6

 List 26

 Script 4

 Scroller 2

 Selector 40

Operation Units

Operation Units 638

Operation Components per Site View 159

Operation Components per Area 53

Operation Components per Operation Group 14

 Adapter 5

 BLOB Utils Component 2

 Connect 7

 Create 18

 Delete 9

 Disconnect 10

 Error Response 19

SmartH2O-Platform Architecture and Design Page 155 D6.2 Version3.2

 Get 8

 Init Job 2

 Input Port 71

 Is Not Null 35

 Jump 9

 KO Port 52

 Login 1

 Logout 1

 Loop 4

 Mail 1

 Update 23

 Module 97

 No Op 4

 OK Port 73

 Parameter Collector 9

 Password 1

 Query 1

 Reset 6

 Response 19

 Scale Image Unit 6

 Schedule Job 4

 Script 25

 Selector 70

 Solicit 19

 Strings Function Unit 8

 Switch 13

 Time 6

