
 

DELIVERY MANAGEMENT PLAN 
AND TESTING SPECIFICATION 
Developing, testing and releasing the 
SmartH2O software platform 
 
 
 
 
 

SmartH2O  
 
Project FP7-ICT-619172 
 
Deliverable D6.1  WP6 
 

 
  
 

Deliverable 
Version 1.7 – 30 Sept 2014 

Document. ref.: 
D6.1.SETMOB.WP6.V1.7 

 
 
 
 
 
 
 
 
 



 
SmartH2O - Delivery management plan and testing specification                  D6.1 Version 1.7 

 
 

 
 
 
 
 
 
Programme Name:  ...................... ICT 
Project Number: ........................... 619172 
Project Title: ................................. SmartH2O 
Partners: ....................................... Coordinator: SUPSI 

Contractors: POLIMI, UoM, SETMOB, EIPCM, 
TWUL, SES, MOONSUB 

 
Document Number:  ..................... smarth2o. D6.1.SETMOB.WP6.V1.7 
Work-Package: ............................. WP6 
Deliverable Type:  ........................ Document 
Contractual Date of Delivery:  ..... 30 September 2014 
Actual Date of Delivery:  .............. 30 September 2014 
Title of Document:  ....................... Delivery management plan and testing 

specification 
Author(s):  ..................................... Luigi Caldararu, Piero Fraternali, Jasminko 

Novak. 
 
 
Approval of this report  ............... Approved by the Project Coordinator 
 
Summary of this report: .............. D6.1 Delivery Management Plan and Testing 

Specification: description of the process of 
designing, developing, testing and releasing of 
the SmartH2O software platform 

 
History: .......................................... n/a 
 
Keyword List:  .............................. delivery, management plan, software, 

development, testing, component 
 
Availability This report is restricted   
 
 
 
 
 

 
This work is licensed under a Creative Commons Attribution-NonCommercial-

ShareAlike 3.0 Unported License. 
This work is partially funded by the EU under grant ICT-FP7-619172 



 
SmartH2O - Delivery management plan and testing specification                  D6.1 Version 1.7 

 
 

Disclaimer 
This document contains confidential information in the form of the SmartH2O 
project findings, work and products and its use is strictly regulated by the 
SmartH2O Consortium Agreement and by Contract no. FP7- ICT-619172. 

Neither the SmartH2O Consortium nor any of its officers, employees or agents 
shall be responsible or liable in negligence or otherwise howsoever in respect of 
any inaccuracy or omission herein. 

The research leading to these results has received funding from the 
European Union Seventh Framework Programme (FP7-ICT-2013-11) under 
grant agreement n° 619172. 

The contents of this document are the sole responsibility of the SmartH2O 
consortium and can in no way be taken to reflect the views of the European Union. 

 
 
 

 

 

 
 
 
 
 
 



 
SmartH2O - Delivery management plan and testing specification                  D6.1 Version 1.7 

 
 

Table of Contents 
1.	   INTRODUCTION 2	  
2.	   OVERVIEW OF THE SMARTH2O ARCHITECTURE 3	  

2.3	   SMARTH2O FUNCTIONAL OBJECTIVES 4	  
2.4	   LAYERS OF THE SMARTH2O ARCHITECTURE 4	  

2.4.1	   Data acquisition layer 4	  
2.4.2	   Data/Object layer 4	  
2.4.3	   Business Process layer 5	  
2.4.4	   Consumer layer 5	  

2.5	   SMARTH2O COMPONENTS 5	  
3.	   SPECIFYING REQUIREMENTS IN THE SMARTH2O PROJECT 7	  

3.3	   USER-CENTRED DESIGN METHODOLOGY 7	  
3.4	   REQUIREMENTS SPECIFICATION MODEL 7	  

4.	   DEVELOPMENT PROCESS AND METHODOLOGIES 9	  
4.3	   MODEL DRIVEN DEVELOPMENT PROCESS 9	  
4.4	   AGILE DEVELOPMENT PROCESS 12	  
4.5	   REFERENCE ARCHITECTURAL PATTERNS 14	  

Design Patterns 14	  
Three-tier architecture 15	  
Application frameworks 16	  

4.6	   CODING CONVENTIONS AND GUIDELINES 17	  
4.6.1	   Naming Conventions 17	  
4.6.2	   Guidelines Writing Source Code 17	  
4.6.3	   Exception Handling 17	  
4.6.4	   Logging Guidelines 18	  
4.6.5	   Third Party Components Integration Guidelines 18	  

4.7	   CONTINUOUS INTEGRATION 18	  
4.7.1	   Continuous integration flow description 19	  

5.	   WHAT MAKES A SMARTH2O RELEASE 21	  
Group Identifier (groupId) 21	  
Artefact Identifier (artefactId) 21	  
Version (version code) 21	  
Packaging (packaging) 21	  

6.	   RELEASE PLAN 22	  
6.3	   RELEASE NOTES 22	  
6.4	   CONTENT OF THE PLATFORM RELEASES 23	  

7.	   TESTING STRATEGY 27	  
7.3	   UNIT TESTING 27	  
7.4	   INTEGRATION TESTING 27	  
7.5	   END TO END FUNCTIONAL TESTING 27	  
7.6	   TESTING TOOLS 28	  

7.6.1	   GUI testing 28	  
7.6.2	   Web service testing 28	  



 
SmartH2O - Delivery management plan and testing specification                  D6.1 Version 1.7 

 
 

7.6.3	   Component testing 28	  
7.6.4	   Performance testing 29	  

8.	   CONCLUSIONS AND FUTURE WORK 30	  
9.	   REFERENCES 31	  



 
SmartH2O-Delivery management plan and testing specification                 Page 1 D6.1 Version 1.7 

 
 

 

Executive Summary 

This document is the Deliverable D6.1: Delivery management plan and testing 
specification, which, according to the Description of Work has the following goals: 
 
D6.1) This task, on the basis of the requirements described in T2.2 (Functional and non 
functional requirements analysis), sets up of a centralized and automatically supported build 
process verified by automatic unit tests. 
Mainly, it lays the ground for an effective collaboration environment for developers, who 
continuously are updated about the status of the whole development of SmartH2O. The aim 
of delivery management is to lower deployment and integration risk by supporting error prone 
tasks (such as manual deployment) and install project automation tools. 
 
It describes the technical standards and procedures, adopted in the SmartH2O software 
development process; it also presents the plan for delivering SmartH2O platform releases, as 
conceived at the current stage of the project (month 6). 

• Chapter 1 resumes the objectives of the SmartH2O project in terms of behavioural 
models that will be implemented in the software platform. 

• Chapter 2 provides an overview of the SmartH2O architecture included in each 
release. The development strategy for SmartH2O platform is evolutionary prototyping 
which means that it will go through several iterations following incremental 
refinements of the functional specification (Task 2.3) and architecture design (Task 
6.2). 

• Chapter 3 presents an overview of the planned requirements analysis methodology. 
• Chapter 4 provides a description of the development process, methodology and 

tools. 
• Chapter 5 describes the composition of SmartH2O platform releases. 
• Chapter 6 schedules the timetable for the planned functionality within each release. 
• Chapter 7 provides the testing strategy, introducing the procedures that will be 

followed in the testing SmartH2O components and artefacts. 
 
  
 
 
 



 
SmartH2O-Delivery management plan and testing specification                 Page 2 D6.1 Version 1.7 

 
 

1. Introduction 
 
The SmartH2O project develops an ICT platform for improving the management of urban and 
peri-urban water demand thanks to the integrated use of smart meters, social 
computation, and dynamic water pricing, based on advanced models of consumer 
behaviour. 
The solution proposed by the SmartH2O project will be able to: 

• Understand and model the consumers’ current behaviour on the basis of historical 
and real-time water usage data; 

• Predict how the consumer behaviour can be influenced by various water demand 
management policies, from water savings campaigns, to social awareness 
campaigns, to dynamic water pricing schemes; 

• Raise the awareness of water consumers on their current water usage habits and 
their lifestyle implications and to stimulate them to reduce water use. 

From the technical viewpoint, building the SmartH2O system is a challenge due to several 
factors stemming from the hybrid nature of the solution to be constructed; indeed SmartH2O 
is: 

• A socio-technical system, which must deliver an engaging user experience to 
attract and retain water users. 

• A data-intensive system, because it will acquire, integrate and process a vast mount 
of heterogeneous data. 

• A quasi-real time system, because it will ingest metering data from the water 
network at a high speed and volume. 

• A decision support system, in its capacity to serve the data analytics and modelling 
needs of the water utility managers. 

• A distributed system, because it will be deployable also component-wise and in a 
Software as a Service model, which demands for a highly distributable and flexible 
architecture. 

To tackle the development of a system of this nature, it is imperative to establish a principled 
development process, based on solid engineering standards. 
The choice of SmartH2O is to adopt an agile version of Model Driven Engineering 
[Ambler04], which conjugated the platform-independent nature of MDE with the lean 
development approach of agile processes. 
The motivation of this approach is manifold: 

• Expertise of the Consortium: the consortium partners are well acquainted with both 
MDE and agile methods.  

• Benefits in the project lifetime: MDE delivers better documentation of the software 
(the models) and is amenable to a higher degree of automation (e.g., code 
generation) and is less prone to technology changes. 

• Benefits after the project conclusion: models embody the technical knowledge in a 
more durable form than source code and thus facilitate post project exploitation, 
when novel scenarios may demand the adaptation of the SmartH2O components to 
different technological platforms. 



 
SmartH2O-Delivery management plan and testing specification                 Page 3 D6.1 Version 1.7 

 
 

2. Overview of the SmartH2O architecture 
As presented in the Project Description of Work (DoW) (see Figure 1), the original concept of 
the SmartH2O architecture indicates the components and the processes that will be 
implemented in order to achieve individual and collective behavioural response to specific 
water conservation policies. 

 

 
 

Figure 1: Overview of the SmartH2O architecture (DoW – SmartH2O) 
Seen as a system, SmartH2O platform can be seen as a negative feedback control system. 
A negative feedback control is specific to a system in which the output of the main process 
related to a proposed objective is fed back into the input with the purpose to reduce the effect 
of increasing the input. This kind of feedback control generally induces stability over a 
proposed objective. 
In the real world of the SmartH2O project, the purpose is a sustainable water conservation 
policy, while the negative control feedback consists of inducing a shared understanding and 
motivation by the water users, thus leading to a reduction in water consumption, while not 
compromising the quality of life. 
The main goal of the project is to ensure an efficient water demand using social awareness, 
social gaming incentives and financial instruments. Following this social objective, Smart 
H2O Platform architecture is designed with respect to the main data flows: 

• Input flow: user behavioural data (usage metering, social game and social media 
profile) 

• Control flow: social game incentives and price signals. This flow is supposed to 
trigger changes in user behaviour according to Water Supplier objectives 

Besides the main data flows, the Platform must also accommodate water utility subscriber 
profile data coming from Water Supplier portals and reporting and analysis tools for Water 
Supplier companies. 



 
SmartH2O-Delivery management plan and testing specification                 Page 4 D6.1 Version 1.7 

 
 

2.3 SmartH2O functional objectives 

The high level design shows that SmartH2O Platform relies on collecting data from water 
utilities, end-consumers gaming actions and social media, processing data using data 
analysis instruments such as gamification, agent based modelling and price modelling, then 
measuring and exposing user behaviour changes. 
In designing the software platform, specific independent components can be identified, as 
well as their role of providing functionality as services to other components. Such 
components are independent of vendor, product or technology. This is the leading principle 
towards the decision of implementing a Service-Oriented Architecture for achieving 
SmartH2O objectives. 

 
Analysis and design methodology 
The analysis and design methodology used for SmartH2O Platform is Service Oriented. The 
theoretical basis and practical modelling tools reside mainly on: 

• Service Oriented modelling and architecture (SOMA) from IBM. 
• Service Oriented Architecture Modelling Language (SOAML) from OMG. 
• Unified Modelling Language (UML) from OMG. 
• Industry best practices and patterns for architecture and design. 

2.4 Layers of the SmartH2O architecture 

Technical implementation of SmartH2O Platform is based on a layered architecture. Each 
layer was designed with respect to separation of concerns principles. The proposed 
architecture is organized in four distinct layers: 

• Data acquisition layer. 
• Data/object layer. 
• Business process layer. 
• Consumer layer. 

2.4.1 Data acquisition layer 
This layer is responsible with bulk data acquisition and bulk data delivery.  Inputs of this layer 
are: 

• Raw water usage data files from Water Utilities. Parallel processing of raw data files 
will be performed by open source technology such as Apache Hadoop / Pig data 
analysis platforms. 

• Social media user data. 
• Other REST based data sources, user portals of Water Utilities. 
This layer plays the role of a mediation component that handles raw data acquisition, 
transformation and storage in a format that can be used be upper layers. 

2.4.2  Data/Object layer 
This layer is responsible for data storage in SQL (and NoSQL formats where needed for 
efficient processing). This layer will expose services for upper level for basic access to data. 
It will store data such as: 

• Water usage data. 
• User profile data. 
• Game actions and rewards data. 
• Social media data. 
• Agent based modelling data. 



 
SmartH2O-Delivery management plan and testing specification                 Page 5 D6.1 Version 1.7 

 
 

• Price modelling data. 

2.4.3  Business Process layer 
This layer is responsible for implementation of business logic. This layer will expose business 
services for Consumer layer. Business level components are: 

• Gamification engine. This component will provide game scenarios and will handle 
user interactions with the platform through social game clients. This is a platform 
built-in component, as it satisfies a critical SmartH2O project objective. 	  

• Pricing engine. This component will implement Econometric modelling of urban and 
industrial price response without social media intervention of a dynamic link to water 
supply or environmental conditions. It will be integrated into the SmartH2O platform 
through its own API. 

• Agent-Based Modelling (ABM) engine. This component will be implemented in an 
agent-based simulation platform such as NetLogo or Repast. It will be integrated into 
the SmartH2O platform through its own API. 

2.4.4 Consumer layer 
This layer consists of client applications for services exposed by the Business Process Layer. 
Consumer of platform business services that are foreseen at this stage: 

• GWAP (Games with a Purpose) client application. 
• Modelling client applications. 
• Platform administration and configuration application. 
• Water utility subscriber application. 

As the platform implementation advances it will always possible to connect to the SmartH2O 
services any client applications that implements the platform API specification. 

2.5 SmartH2O Components 

The following figure is a representation of the SmartH2O platform at component level: 

 

Figure 2: SmartH2O Platform Components 



 
SmartH2O-Delivery management plan and testing specification                 Page 6 D6.1 Version 1.7 

 
 

 
• The Smart meter data management component deals with the acquisition of data 

streams from smart meter and their consolidation within the SmartH2O database. 
• The Portal data exchange component deals with the communication between the 

SmartH2O platform and a third party application already supporting the interaction 
with the various types of users. Such application may comprise a customers’ portal of 
the utility company, or a B2E application for managers and operators. 

• The Social data exchange component deals with the communication between the 
SmartH2O platform and social network communities where the utility company has a 
presence or consumers are already enrolled. Such communication may serve the 
purpose of advertising water awareness initiatives, disseminate the social games, or 
publishing customers’ achievements. 

• The Gamification engine component embodies rules for transforming users’ 
actions into gamification scores and achievements. 

• The Agent Based Model (ABM) component implements the user model that 
simulates the user’s behaviour in given input scenarios. This component will be 
implemented by extending an existing ABM engine such as Netlogo or Repast and 
will be controlled via an exposed API. 

• The Pricing engine component implements dynamic pricing algorithms for Water 
Utility companies. The pricing engine will use consumption data, user profile data, 
external input like meteorological data, water supply forecast. It will apply specific 
algorithms to input data and parameters and will deliver dynamic billing information. 

• The Gamified water bill component customizes the gamification engine component 
to support the computation of consumers’ achievements and scores based on activity 
logs that describe water-related actions. 

• The Social awareness component consists of mobile apps (typically, mobile digital 
games) targeted at water consumers for letting them have a playful experience while 
increase their individual and social awareness about sustainable water consumption 
behaviour. Such component provides activities logs for the gamification engine to 
compute the user’s gamification achievements and scores. 

• The Consumer portal component comprises a set of applications, targeted to the 
water consumers and utility employees).   

• The Consumer behaviour analysis and water demand prediction (a.k.a. 
SmartH2O console) component comprises a set of applications, targeted to the 
water utility employees.   

The full technical details of the SmartH2O platform and application design will be provided in 
the deliverable: D6.2 Platform Architecture and Design, which is due at month 9. 



 
SmartH2O-Delivery management plan and testing specification                 Page 7 D6.1 Version 1.7 

 
 

3. Specifying requirements in the SmartH2O project 
SmartH2O will develop a socio-technical system, which highly depends on the human factors 
in the interaction with the technology. Therefore a suitable emphasis is placed in the 
methodology for collecting requirements, which must be user-centred and give appropriate 
attention to the usability and social acceptability factors in application design. 
To emphasize this aspect of development, we anticipate in this section the view of the 
planned requirements analysis methodology and the resulting requirements specification 
format that will be employed in the SmartH2O project.  

3.3 User-centred design methodology 

The requirements analysis methodology follows the iterative human-centred design process 
defined in ISO 13497 [ISO99]. To understand user needs following this process, first the 
target group and context of use are defined, followed by the specifications of user 
requirements, the development of design solutions and the evaluation of these solutions with 
users and stakeholders (see Figure 3). The results feed into the next iteration cycle, in which 
the activities are repeated until the solution is considered mature enough. During these 
multiple iterations, feedback is obtained both from end-users (user pull) and technical 
partners (technology push), which aims to construct requirements that are both technically 
feasible and grounded in user-needs. 
 

 

Figure 3: Human-centred design process according to [ISO 13407] 

3.4 Requirements specification model 

Based on the requirements analysis activities, the requirements for the SmartH2O 
applications will be specified in the following way. High-level user stories (scenarios of use, 
[Carrol95]) will be defined to describe what a set of users do and experience as they perform 
a set of specific tasks in a specific context. The user stories will be described by a short 
structured narrative and accompanied by a visual user interface mock-up illustrating the given 
functionalities from the user perspective. 
For each user story a list of functional and non-functional requirements accompanied by 
related success criteria will be defined. These will be formalized into use cases based on the 
well-known use case template introduced in [Cockburn01] and accompanied by 
corresponding sequence diagrams [Siegel05). This requirements specification model is 
visualized in Figure 4. 
The requirements following the described specification model will be delivered within the 

iterate, 
iterate 



 
SmartH2O-Delivery management plan and testing specification                 Page 8 D6.1 Version 1.7 

 
 

deliverables D2.1 Use cases and early requirements, D2.2 Final requirements and D2.3 
Functional specification. 

 

Figure 4: User-centered requirements specification model in SmartH2O 

The results of the application of the employed requirements analysis and specification 
methodology are collected in the deliverables: 

• D2.1 Use cases and early requirements, which is due at month 8. 
• D2.2 Final requirements, which is due at month 12. 

User Stories Mockups Use Cases 

Use Case 1 

Use Case 
Description 

Sequence Diagram 

Functional 
Requirements 

Non-functional 
Requirements 

Success Criteria 

Use Case 2 

Use Case n 



 
SmartH2O-Delivery management plan and testing specification                 Page 9 D6.1 Version 1.7 

 
 

4. Development process and methodologies 
In order to reach the project objectives, a proper technical management of the SmartH2O 
platform implementation must be conducted. For selecting the right development 
methodology critical aspects as the following ones have to be considered: 

• The usage of open standards for developing and distributing the SmartH2O platform. 
• The identification of highly reusable independent components in the designed 

software system. 
• The strength of the relationship between the software components and between the 

SmartH2O system and the external integrated applications. 
As a result of an extensive analysis based but not limited to the above aspects, the 
methodologies selected for developing and integrating the software components of the 
SmartH2O Platform is Model-Driven, Agile and Service Oriented.  
The theoretical basis and practical modelling tools and patterns of this Architecture document 
reside mainly but not limited to: 

• Object oriented system modelling with the Unified Modelling Language (UML) from 
OMG [OMG-UML]. 

• Interactive system modelling with the Interaction Flow Modelling Language [OMG-
IFML]. 

• Data Modelling with the Entity-Relationship Model [Chen76].  
• Service-oriented modelling and architecture (SOMA) with IBM [IBM-SOA] and the 

Service Oriented Architecture Modelling Language (SOAML) from OMG [OMG-
SOAML] 

4.3 Model driven development process 

SmartH2O will develop a platform consisting of a backend for data acquisition, storage, 
processing and the behavioural modelling of users, coupled to a set of graphical user 
interfaces, ranging from gaming interfaces to business portals to data analytics dashboards, 
offered to a variety of stakeholder. 
The capabilities that SmartH2O must deliver to the users span such aspects as information 
browsing and analytics, hypertext-style navigation, form-based interaction, and interface 
personalization, both in consumer applications and in business information systems. Such 
functionalities must be implemented on top of a variety of devices, technological platforms, 
and communication channels.  
To address this complexity, SmartH2O will exploit software development approaches based 
on a Platform Independent Model (PIM), which can be used to express the software design 
decisions independently of the implementation platform, according to the so-called Model 
Driven Engineering paradigm (MDE) [BCW12]. 
Specifically, SmartH2O development will follow the MDE incarnation proposed by the Object 
Management Group Model Driven Architecture (MDA) and, more in general, which is a 
well-known international body of standards for the MDE development approach. 
Furthermore, the development of complex and heterogeneous applications such as the 
SmartH2O back-end platform and GUIs will be addressed with agile approaches, which 
traverse several cycles of “problem discovery” / “design refinement” / “implementation”. An 
iteration of the development process generates a prototype or a partial version of the system.  
Such an incremental lifecycle is particularly appropriate for modern Web and mobile 
applications, which must be deployed quickly and change frequently during their lifetime to 
adapt to the user’s requirements. Figure 5 schematizes the development process adopted in 
SmartH2O platform and positions the various modelling notations and standards exploited in 
the project within the flow of activities. 
Requirements specification collects and formalizes the information about the application 



 
SmartH2O-Delivery management plan and testing specification                 Page 10 D6.1 Version 1.7 

 
 

domain and expected functions. The input is the set of business/user requirements that 
motivate the application development, and all the available information on the technical, 
organizational, and managerial context. The output is a functional specifications document 
comprising: 

• The identification of the user roles and of the use cases associated with each role. 
• A data dictionary of the essential domain concepts and of their semantic 

relationships. 
• The workflow embodied in each use case, which shows how the main actors (the 

user, the application, and possibly external services) interact during the execution of 
the use case. 

In addition, non-functional requirements must also be specified, which include performance, 
scalability, availability, security, and maintainability. When the application is directed to the 
general public, e.g., the water users, requirements about the “look & feel” and usability of the 
interfaces assume special prominence among the non-functional requirements. User-centred 
design practices can be applied, which rely on the construction of realistic mock-ups of the 
application functionality, which can be used for the early validation of the interface concepts 
and then expanded into more detailed and technical specifications during the front-end 
modelling phase. The user-centred methodology explained in Section 3 will drive the 
activities in the Requirements specification task. 
 

 

Figure 5: Role of IFML in the development process of an interactive application 

• Domain modelling1 organizes the main information objects identified during 
requirements specification into a comprehensive and coherent Domain Model. 
Domain modelling is a well-established discipline: the first conceptual data modelling 
language, the Entity-Relationship model, was proposed in 1976, and ever since new 
modelling languages have been proposed, including UML. Correspondingly, 
modelling practices and guidelines have been consolidated; in particular, domain 
modelling for interactive applications exploits suitable design patterns, discussed in 
chapter 3. The entities and associations of the Domain Model identified during 
domain modelling are referenced in the front-end design models, to describe what 

                                                        
 
 
1 “Domain Modelling” is the locution normally employed in object-oriented methodologies, whereas conceptual database design 

normally refers to “Data Modelling”. 

Requirements	  
Specification Domain	  Modelling

Architecture	  Design

Implementation

Maintainance	  
and	  Evolution

Front-‐end	  Modelling

Testing	  and	  Evaluation

Application

Business	  logic	  Modelling

IFML	  	  model
Domain	  
model

Requirements	  
specifications

Business	  logic
model

Deployment



 
SmartH2O-Delivery management plan and testing specification                 Page 11 D6.1 Version 1.7 

 
 

pieces of data are published in the interface. 
• Front-end modelling maps the information delivery and data manipulation 

functionality dictated by the requirements use cases into a front-end model. Front-
end modelling operates at the conceptual level, and is where Interaction Flow 
Modelling Language (IFML) [OMG-IFML] comes into play. The designer may use 
IFML to specify the organization of the front-end in one or more top-level view 
containers, the internal structure of each view container in terms of sub-containers, 
the view components that form the content of each view container, the events 
exposed by the view containers and components, and how such events trigger 
business actions and update the interface. 

• Business logic modelling specifies the business objects and the methods 
necessary to support the identified use cases. UML static and dynamic diagrams are 
normally employed to highlight the interfaces of objects and the flow of messages. 
Process-oriented notations, such as UML activity and sequence diagrams, BPMN 
process models, and BPEL service orchestrations provide a convenient way to 
represent the workflow across objects and services. The actions specified in the 
business logic design can be referenced in the front-end model, to show which 
operations can be triggered by interacting with the interface.  

• Data, front-end, and business logic design are interdependent activities executed 
iteratively; the precedence order of Figure 5 is only illustrative: in some usage 
scenarios, work could start from the design of the front end and the data objects and 
actions could be discovered a posteriori by analysing what information is published in 
the interface and what operations are requested to support the interactions. 

• Architecture design is the definition of the hardware, network and software 
components that make up the architecture on which the application delivers its 
services to users. The goal of architecture design is to find the mix of these 
components that best meets the application requirements in terms of performance, 
security, availability and scalability, and at the same time respects the technical and 
economic constraints of the project. The inputs of architecture design are the non-
functional requirements and the constraints identified during business requirements 
collection and formalized in the requirements specifications. The output may be any 
specification that addresses the topology of the architecture in terms of processors, 
processes and connections, such as UML deployment diagrams.  

• Implementation is the activity of producing the software modules that transform the 
data, business logic, and interface design into an application running on the selected 
architecture. Data implementation maps the Domain Model onto one or more data 
sources, by associating the conceptual-level constructs to the logical data structures 
(e.g., entities and relationships to relational tables). Business logic implementation 
creates the software components needed to support the identified use cases; the 
implementation of individual components may benefit from the adoption of software 
frameworks, which organize the way in which fine-grain components are orchestrated 
and assembled into larger / more reusable functional units and also cater for non-
functional requirements, like performance, scalability, security, and availability. 
Business logic may also reside in external services, in which case implementation 
must address the orchestration of calls to remote components such as Web APIs. 
Interface implementation translates the conceptual-level Containers and 
Components into the proper constructs in the selected implementation platform. View 
Containers may interoperate with business objects, deployed either in the client layer 
or in the server layer. 

• Testing and evaluation verify the conformance of the implemented application to 
the functional and non-functional requirements. The most relevant concerns for 
interactive applications testing are: 

• Functional testing: the application behaviour is verified with respect to the 
functional requirements. Functional testing can be broken down into the 
classical activities of module testing, integration testing and system testing. 



 
SmartH2O-Delivery management plan and testing specification                 Page 12 D6.1 Version 1.7 

 
 

• Usability testing: the non-functional requirements of ease of use, 
communication effectiveness, and adherence to consolidated usability 
standards are verified against the produced front-end.  

• Performance testing: the throughput and response time of the application 
must be evaluated in average and peak workload conditions. In case of 
inadequate level of service, the deployment architecture, including the 
external services, must be monitored and analysed for identifying and 
removing bottlenecks.  

• Deployment is the activity of installing the developed modules on top of the selected 
architecture. Deployment involves the data layer and the software gateways to the 
external services, and the business and presentation layer, where the interface 
modules and the business objects must be installed.  

• Maintenance and evolution encompass all the modifications applied after the 
application has been deployed in the production environment. Differently from the 
other phases of development, maintenance and evolution are applied to an existing 
system, which includes both the running application and its related documentation.  

Model Driven Engineering has important implications not only during the production of 
software but also for other development activities. 

• Implementation may exploit model transformations and code generation to produce 
prototypes of the user interface or even the fully functional code. 

• Testing and evaluation can be anticipated and performed on the software models, 
rather than on the final code. Model checking may discover inconsistencies in the 
design of the front-end (e.g., unreachable statuses of the interface) and suggest 
ways for refactoring the user interface for better usability (e.g., recommend uniform 
design patterns for the different types of user interactions, such as searching, 
browsing, creating, modifying, and deleting objects). 

• Finally, maintenance and evolution benefit most from the existence of a conceptual 
model of the application. Requests for changes are analysed and turned into 
changes at the design-level. Then, changes at the conceptual level are propagated to 
the implementation, possibly with the help of model-to-code transformation rules. 
This approach smoothly incorporates change management into the mainstream 
production lifecycle, and greatly reduces the risk of breaking the software 
engineering process due to the application of changes solely at the implementation 
level. 

4.4 Agile development process 

Model-Driven Development can be used in conjunction with agile methodologies, to attain a 
development process called agile model-driven [Ambler04]. 
SmartH2O will adopt an agile approach towards model-driven development and 
software integration for delivering the platform. Based on the preliminary technical 
scenarios identified at this stage of the project, the applications and the services that will 
constitute the software platform will be developed as an iterative process with permanent 
feedback from the user communities and water utilities. Adopting an agile approach will 
ensure a proper way to react quickly and to respond accurately to the changes that are 
inevitable during the development process. 
Scrum is a lightweight project management process [cPrime, NOREX] that can manage 
and control software and product development. Instead of promoting the traditional analysis, 
design, code, test, deploy "waterfall" approach, Scrum proposes iterative and incremental 
practices. Similarly, instead of being "artefact-driven", whereby large requirements 
documents, analysis specifications, design documents are created, Scrum requires fewer 
artefacts in order to start working. Concerning the software development, Scrum 
concentrates on writing software that produces business value. 
In other words, Scrum allows working on small pieces at a time, in an iterative approach. 
Each iteration consists of some requirements gathering, some analysis, some design, some 



 
SmartH2O-Delivery management plan and testing specification                 Page 13 D6.1 Version 1.7 

 
 

development and some testing culminating in an iterative release cycle with many 
deployments. 

Scrum Roles 

Scrum uses three “roles": Product Owner, Scrum Master and Project Team. 
• The Product Owner is possibly a Product Manager or Project Sponsor, a member of 

Marketing or an Internal Customer. 
• The Scrum Master is key person "represents management to the project". Such a 

role usually filled by a Project Manager or Team Leader. They are responsible for 
enacting Scrum values and practices. Their main job is to remove impediments, i.e. 
project issues that might slow down or stop activity that moves the project forward. 

• The Project Team usually consists of between 3 to 10 members. The team itself is 
cross-functional, involving individuals from a multitude of disciplines: QA, 
Programmers, Testers, UI Designers. 

The Process 

"Out of the box" Scrum is described by Figure 6. Most projects have a list of requirements 
(type of system, planning items, type of application, development environment, user 
considerations, etc.) Scrum records requirements in a Product Backlog. Requirements need 
not be precise nor do they need to be described fully. As with most projects, the requirements 
are sourced from the expected users or "the business". The Product Owner prioritizes the 
Product Backlog: items of importance to the project/business, i.e. those items that add 
immediate and significant business value, are bubbled up to the top. 

 

Figure 6: Scrum process 

The Project Team responsible for doing the actual work then creates a Sprint Backlog: this 
comprises of Product Backlog items that they believe can be completed within a 30 day 
period. The Project Team may liaise with the Product Owner and others in order to expand 
item(s) on the Sprint Backlog. After 30 days have elapsed, the team should have a 
"potentially shippable product increment”. 



 
SmartH2O-Delivery management plan and testing specification                 Page 14 D6.1 Version 1.7 

 
 

The Product Owner, the Scrum Master and the Project Team will make an initial pass over 
the Product Backlog items where they work out roughly how long each item will take. Initially, 
these are estimates, best guesses. As time progresses, they will find out if the estimate was 
even close. 

Scrum allows refining the initial estimates on-the-fly: if a task will take longer than envisaged, 
it offers the ability to say so before the tasks starts. By only ever working with small work 
packages (time-boxed to 30 days), any schedule/requirement issues are dealt with as soon 
as they are identified, not much further downstream where the cost of recovery is 
considerably higher. 

4.5 Reference architectural patterns 

The overview of the SmartH2O platform emphasize a system architecture composed by 
decoupled components and packages of components that are orchestrated to work together 
in order to produce the expected outcome. The key principle used in designing and 
developing SmartH2O platform is the “separation of concerns” – that is separating the 
platform into distinct sections, such that each section addresses a separate concern 
(software element). The value of separation of concerns is simplifying development and 
maintenance of computer programs. When concerns are well-separated, individual sections 
can be reused, as well as developed and updated independently. 
Further, close to the development side, the design principles are implemented through design 
patterns. These are critical for underlining a correct approach in designing and writing 
maintainable and reusable code. A design pattern is a reusable solution that can be applied 
to commonly occurring problems in software design. Selecting the right design pattern that 
will be used for implementing the software project is a strategic choice for the success of the 
SmartH2O project in terms of: development, adaptability to requests for change, usability 
from both the user side and the water utility side and overall achievements. 

Design Patterns 
Model-View-Controller (MVC) is a design pattern that enforces the separation between the 
input, processing, and output of an application. To this end, an application is divided into 
three core components: the model, the view, and the controller. Each of these components 
handles a discreet set of tasks. 
The view manages the graphical and/or textual output to the portion of the bitmapped display 
that is allocated to its application. The controller interprets the input events (input from 
mouse and keyboard) from the user, commanding the model and/or the view to change as 
appropriate. Finally, the model manages the behaviour and data of the application domain, 
responds to requests for information about its state (usually from the view), and responds to 
instructions to change state (usually from the controller).  Figure 7 shows a graphical 
representation of the MVC paradigm. 

 

Figure 7: Model-View-Controller paradigm 



 
SmartH2O-Delivery management plan and testing specification                 Page 15 D6.1 Version 1.7 

 
 

Three-tier architecture 
From a conceptual point of view, the MVC paradigm reflects the separation of the tiers within 
the SmartH2O platform multi-tier architecture.  
By segregating the applications into tiers, developers acquire the option of modifying or 
adding a specific layer, instead of reworking the entire application. The Three-tier 
architecture is typically composed of a presentation tier (implementing the user interface), a 
domain logic tier (implementing the business rules), and a data storage tier (implementing 
data access) that are developed and maintained as independent modules. The three-tier 
architecture is intended to allow any of the tiers to be upgraded or even replaced 
independently, in response to changes in requirements or technology. For example, changing 
the operating system in the presentation tier would only affect the user interface code. Also, 
using a different DBMS than the platform original (e.g. PostgreSql instead of MySql), will only 
affect the data storage tier. 

Figure 8 shows a sample graphical representation of the three-tier architecture concept 
implemented within a use-case of the SmartH2O platform. The objective of the application 
use-case is to display a chart representing the water consumption of a family for the current 
month.  

 

Figure 8: Example of Three-tier architecture representation of a SmartH2O use-case 
 
 



 
SmartH2O-Delivery management plan and testing specification                 Page 16 D6.1 Version 1.7 

 
 

Application frameworks 
The key objectives of the SmartH2O platform - that are education in water usage and 
openness in accepting changing of behaviour – are permanently reflected in the choices for  
implementation of the platform, including the approaches towards developing the software 
side.  
The SmartH2O platform is entirely based on Open Source software with Java as central 
technological choice while the code of the specific components that will be developed for 
fulfilling platform specific objectives will be made public for each project release, also. 
The standard structure of the applications will base on software frameworks. 
By this approach, the applications are in full compliance with the business rules, that is 
structured and that is both maintainable and upgradable. Also, the development process 
become faster, because it allows developers to save time by re-using generic modules in 
order to focus on creative areas. 
As an example, a software framework will keep the developer from having to spend days in 
order to create an authentication form - which is a repetitive task in man projects. The time 
that is saved can be dedicated to more specific components as well as to the corresponding 
unit tests, thus providing solid, sustainable and high quality code. 
As a result of understanding the preliminary requirements for development, the process of 
software development foresees the usage of some of the most efficient open source 
programming frameworks and best practices in Java. 
Hibernate [HIB] and Spring [SPRING] are open-source Java frameworks that simplify 
developing and integrating Java/JEE applications. Hibernate framework will be used for 
solving the requirements of managing and persisting data to the platform database. Spring 
framework provides a multitude of services spread over the application architecture, such as 
inversion of control, aspect-oriented programming, modularizing common behaviours, 
decoupling the application components as well as integrating components. 
Figure 9 represents the conceptual integration of Hibernate and Spring in a Java application 
 

 
Figure 9: Conceptual integration of Hibernate and Spring in a Java application 



 
SmartH2O-Delivery management plan and testing specification                 Page 17 D6.1 Version 1.7 

 
 

4.6 Coding conventions and guidelines 

Software production from SmartH2O partners is expected to follow not only common design 
and architectural patterns, but also common rules in naming convention, quality certification, 
development systems, libraries, documentation and forms of Software delivery: all these 
issues are taken in consideration in the following, in order to set up proper foundations for the 
Software building. Where available at the time this document is issued, examples of 
guidelines and system configurations are provided as samples. 
According to this goal, this section provides specific procedures for developers who have to 
deliver SmartH2O components. These procedures are intended to ensure that delivered 
components are installable and work properly. Ideally, by using these procedures, 
components need only to be retrieved from binary repository, installed, configured and tested 
to run, optimising the overall production cycle lead time. 
These paragraphs are intended to give some common conventions for SmartH2O software 
development. In the case of SmartH2O, for all kinds of artefacts produced, (components, 
pipelets and pipelines) the development conventions should be adopted.  

4.6.1 Naming Conventions 
The definition of a common and agreed-upon naming convention for developed bundles and 
created packages is basic in a project with various partners.  

• The names chosen should easy, giving an idea about the feature improved and the 
kind of bundle produced. 

• The name of the project should always be present in all features and bundles. 
• In the name of packages could appear also the coded name of the partner. 

e.g.:  
Feature Name: SmartH2Oproject.process.smob.wikilyrics 
Base package name: eu.smarth2o.process.smob.wilkilyrics 

4.6.2 Guidelines Writing Source Code 
The source code should adopt the standard common java and JavaBean standard rules: 

a. The package names should have only small letters; 
b. All the class names should start with a capital letter; 
c. All the class attributes and member names and also local variable names should 

start with a small letter; 
d. When a class, an attribute, a member or a variable name is composed of more than 

a word, the letter of each word should be capital apart from first one; 
e. The public static constant should be in capital letters and if more words, tied by an 

underscore; 
f. All the class attributes should be private; 
g. All the attributes must be used with their own getters and setters; 
h. Getter and setter methods should be public; 
i. Getter methods don’t have parameters and must return value type of same set 

methods; 
j. Getter methods that don’t return boolean values must start with “get”; 
k. Getter methods that return boolean values should start either with “is” or “get”; 
l. Adding list methods should start with “add”; 
m. Removing list methods should start with “remove”. 

4.6.3 Exception Handling 
Well done exception handling management is really important in framework-based software 
like in SmartH2O. 



 
SmartH2O-Delivery management plan and testing specification                 Page 18 D6.1 Version 1.7 

 
 

It is important that the checked exceptions are well thrown and well managed without 
changing their meaning. If a kind of exception is thrown, the calling code should not manage 
that, should not change the message but at least should create a new exception based on 
the original one. 
Unchecked exception must be well prevented using right checks on parameters, variables 
and attributes. Each parameter should be checked in its integrity to prevent null pointer 
exception, format exception and arithmetical exceptions. 

4.6.4 Logging Guidelines 
In a highly distributed system like SmartH2O it is really important to create a useful and well-
designed logging system. There are some easy rules to follow. 
Avoid a static reference to an apache commons log instance: 
e.g.: It is good doing 
 private final Log _log = LogFactory.getLog(MyClass.class); 
Always check log level before logging: 
e.g.: It is good doing 
 if (_log.isErrorEnabled()) { 
    _log.error("Your error message", e); 
} 
Don’t log an exception before throwing it or issuing a new one: 
e.g.: It is bad doing 
... 
if( paramXY == null ) { 
    if (_log.isErrorEnabled()) { 
        _log.error("paramXY is not set"); 
    } 
    throw new NullPointerException("paramXY is not set"); 
} 

4.6.5 Third Party Components Integration Guidelines 
The installation of third party libraries (libraries, components and other software artefacts not 
developed within SmartH2O project – for example some graphical interfaces may use third 
party libraries and be preliminary to the installation of SmartH2O components. These 
dependencies should be clearly reported in the installation and configuration file.  
Libraries should be delivered jointly with related components where possible. If this is not 
possible because of technical or legal (licenses) or other reasons, the installation and 
configuration file should report download locations, versions and describe installation and 
configuration details with reference to the proper URLs. All this information is collected in the 
installation and configuration file. 

4.7 Continuous Integration 

Performing a high quality software development process that delivers trustful results is a key 
factor in reaching the project objectives. This must-have condition has to be fulfilled while 
meeting real-life constraints such as developing collaboration projects in a loosely coupling 
environment. This is a kind of condition that it is unavoidable when organizations of different 
types, shapes and sizes are working together at collaboration projects as well as when the 
project itself aims to integrate other external projects. 
These are reasons why an advanced and intelligently adapted practice is needed during 
SmartH2O platform development time. Continuous integration (CI) is the practice of 
merging all developer working copies with a shared mainline as often as possible. Each 
check-in is then verified (tested, compiled, installed and audited) by an automated build, 
allowing teams to detect problems as early as possible. Because CI requires integrating so 
frequently, there is significantly less back-tracking to discover where things went wrong, so 
that the developers can spend more time for building features than for debugging errors. 



 
SmartH2O-Delivery management plan and testing specification                 Page 19 D6.1 Version 1.7 

 
 

CI is backed by several important principles that ensures a high quality software development 
process for the SmartH2O platform. Such principles are: 

• Maintaining a single source repository. 
• Automating the build. 
• Making the builds self-testing. 
• Keeping the build fast. 
• Testing in a clone of the production environment. 
• Making it easy for anyone to get the latest executable. 
• Making it possible for everyone to see what’s happening. 
• Automating the deployment. 

The development team prepared the development environment by installing and configuring 
the tools for Continuous integration (CI) [ThoughtWorks]. 
The CI environment uses Jenkins [Jenkins] as continuous integration open-source server 
that receives by automated token the new code that was committed to the Bitbucket 
[Bitbucket] (Git based) software repository. Jenkins then tests, packages and submits the 
code to Sonar [Sonar] automatic code reviewer. After successfully passing the code audit the 
element is saved or released in Nexus [Nexus] – the repository manager for artefacts. The 
outcome of each iteration is reported by e-mail. 

 

 
Figure 10: Continuous integration process 

 
4.7.1 Continuous integration flow description 
Bitbucket is a web-based hosting service for projects that use Git revision control and source 
code management system. Bitbucket is used to host the code and also as an issue tracker. 
The code submitted to Bitbucket by the software developers is then automatically sent to 
Jenkins for proper testing.  Jenkins is an open-source continuous integration server. It is 
designed to test and report on isolated changes in a larger code base in real-time. Jenkins is 
a single point of entry for building, testing, packaging and static analysis for the modules of 
the SmartH2O platform. 
In the software development configuration of the SmartH2O platform, Jenkins builds a project 
using Maven [Maven]. Maven is a project building, management and comprehension tool 
based on the POM (Project Object Model). After building the project and testing using Maven 
the project is then sent to Sonar for a proper code analysis, review and audit. Sonar is a 



 
SmartH2O-Delivery management plan and testing specification                 Page 20 D6.1 Version 1.7 

 
 

code quality platform it covers – coding rules, potential bugs, complexity, and duplication. 
Sonar issues a report that is sent to the parties interested according to the configuration. 
After the code has been tested by Sonar, Jenkins then sends the code to the Nexus artefact 
repository manager for saving or releasing.  Selenium [Selenium] is a suite of tools for 
automating web browsers across many platforms for testing purposes. It will be used as a 
build step in Jenkins in order to test the SmartH2O platform and components. 



 
SmartH2O-Delivery management plan and testing specification                 Page 21 D6.1 Version 1.7 

 
 

5. What makes a SmartH2O release 
Each SmartH2O platform release is structured in artefacts. A release artefact is a tangible by-
product produced during the software development process. The release artefact is a static 
object, which will not change in the project repository. Released artefacts are considered to 
be stable in order to guarantee that builds, which depend upon them, are solid and 
repeatable over time. 
Each component of the SmartH2O platform has a specific structure, depending on the 
expected outcome. Generically, each component consists of: 

1. External Interfaces (Web Applications). 
2. Business services. 
3. Protocols. 
4. Integration services. 

According to this structure, each SmartH2O release will be composed by group of artefacts 
corresponding to the advancement achieved at the specific time, provided in packaged way. 
Moreover the artefacts will be delivered together with the release notes document. 
For example, a web application will be released as a WAR file artefact. The WAR file will be 
associated with a PGP signature, an MD5 and SHA checksum that can be used to verify both 
the authenticity and integrity of the binary software artefact. The code repository will include a 
set of descriptive attributes: groupId, artefactId, version, and packaging. 
Group Identifier (groupId) 

A group identifier groups a set of artefacts into a logical group. Groups are often designed to 
reflect the organization under which a particular software component is being produced. For 
example, software components being produced by the company SETMOB member of the 
SmartH2O project Consortium are available under the groupId org.smarth2o.smob. 

Artefact Identifier (artefactId)  

An artefact will have an identifier for a software component. An artefact can represent an 
application or a library; for example, when creating a simple web application the project might 
have the artefactId “simple-webapp”, while when creating a simple library, the artefact might 
be “simple-library”. The combination of groupId and artefactId must be unique for a project. 

Version (version code) 

The version of a project follows the established convention of Major, Minor, and Point release 
versions. For example, a simple-library artefact has a Major release version of 1, a minor 
release version of 2, and point release version of 3, the version would be 1.2.3. During the 
development, versions can also have alphanumeric qualifiers that are often used to denote 
release status. An example of such a qualifier would be a version like “1.2.3-BETA” where 
BETA signals a stage of testing meaningful to consumers of a software component. 

Packaging (packaging) 

Packages describe any binary software format including but not limited to JAR, WAR, ZIP, 
SWC, EAR, SAR. 

 
 



 
SmartH2O-Delivery management plan and testing specification                 Page 22 D6.1 Version 1.7 

 
 

6. Release Plan 
In respect of the initial work plan schedule identified in the DoW, the release scheduling 
details the functionalities expected in each platform prototype. The SmartH2O project timeline 
comprises three main development phases. The end of each phase corresponded to a 
SmartH2O release, which collects the progresses – in terms of artefacts- achieved at that 
time. Table 1 recollects the initial planning of release content, from the DoW. 
 

Delivery 
Date 

Release 
version 

Objective 

M12 1.0 The first prototype will provide the infrastructure to collect 
and organize the water consumption data of the consumers. 
It will also contain the first implementations of the first user 
behaviour models produced in Task 3.3. The deliverable 
includes the source code and the documentation (for use and 
installation) of the platform. 

M24 2.0 The second prototype will provide the implementation of the 
simulation platform to predict user behaviour under various 
types of stimuli, from increased awareness to selected price 
incentives, as detailed in Task 3.4. The second prototype will 
be capable of connection with the information systems of the 
two water utilities and it will provide an initial version of the 
portal for the water utilities and of the social awareness app 
for the users (gamified bill) who will be able to start 
monitoring their respective performance indicators for water 
savings. The deliverable includes the source code and the 
documentation (for use and installation) of the platform. 

M36 3.0 This prototype will provide the final version of the portal for 
the water utilities and for the users. The water utilities will be 
able to use the portal to evaluate the impact of prospects 
policy changes (increased user awareness/pricing changes) 
and examine historical data on the performance of the 
consumers. The end users will be able to use the portal as 
an effective complement to the SmartH2O app. The 
deliverable includes the source code and the documentation 
(for use and installation) of the platform. It also includes the 
documentation for the use of the Application programming 
Interfaces offered by the web services implemented in the 
SmartH2O platform. Finally, it contains the Software 
Development Kit required to develop and expand the 
platform, thus allowing the installation of the public software 
artefacts by third parties. 

Table 1: SmartH2O project initial planning 

6.3 Release notes 

During the phases of the development process, each platform release will be accompanied 
by its release plan. The objective of a release plan is to check and validate the state of the 
project during the whole development life-cycle. Therefore, each SmartH2O release is issued 
with a presentation document – the Release notes - with the goal to check and validate the 
implementation status of the release itself, and to update and add further details for the next 
development phase. 
The Release notes document is scheduled to be released in conjunction with the 



 
SmartH2O-Delivery management plan and testing specification                 Page 23 D6.1 Version 1.7 

 
 

correspondent software release delivery. In particular, Release notes have the following 
objectives: 

• Reporting and evaluate the situation of the Development Process;  
• Determining possible deviations from the initial Release Plan; 
• Planning to implement necessary corrective actions; 
• Refine and improve the Release Plan by refining its milestones. 

The SmartH2O release notes will conform to the template described in Table 2 below. 

Release note identifier (name, date, 
version #) 

 

What's New  

System Requirements (third-party 
platforms / modules / etc with version 
numbers / dates) 

 

Features and changes (new features, 
defects corrected, caveats etc) 
Outstanding issues (unresolved defects, 
workarounds, installation issues etc) 

 

Installation guide (how to obtain and 
install) 

 

Known Issues  

Troubleshooting  

FAQ  

Other Resources and Links  

Table 2: template of the SmartH2O release notes 

6.4 Content of the platform releases 

The following tables present the development phases, the release plan and the functionality 
included in the platform releases. The allocation of functionality is stable for release 1.0 and 
can be subject to variations for the later releases, due to the feedback that will be collected 
after the trials and user evaluation of release 1.0. 
 

Delivery 
Date 

Release 
version 

Features to be 
delivered 

Functionality overview 

M12 1.0 SmartH2O Data model 
and database  

A data base schema and instance (documented in 
D3.1) adhering to the data model designed in Task 3.1 
User data collection and analysis, for representing, 
storing, and querying the objects of the SmartH2O 
platform and applications. 

Data collection and 
processing from water 
smart meters  

Service for collecting, processing and importing into the 
database the water meter reading files containing data 
provided by sensors. The input consists in sets of files 
containing water usage data. The output consists in 
database records. Service for Extracting, Transforming 
and Loading water meter data into SmartH2O database 
following the data model. 



 
SmartH2O-Delivery management plan and testing specification                 Page 24 D6.1 Version 1.7 

 
 

Table 3: release content of version 1.0 of the SmartH2O platform 

 
 

Data collection and 
processing from external 
sources (e.g., 
meteorological data 
series) 

Service for collecting, processing and importing into the 
database data referring to time series and information 
consumed by the SmartH2O models (e.g., weather data 
series). The output consists in database records. 

User sign-up and login  Web GUI for allowing end-users to login and register 
their data not provided by sensors. (e.g., data for 
identifying houses, users, billing prices etc.). This data 
is provided directly by the user. 

Role based access 
control 

Business component for enforcing the policy of access 
control based on the identified user roles: 
internal/external. Internal user taxonomy reflecting the 
organizational structure of the utility employees. 

User profiling Profile data of the registered user with variable profile 
attributes based on her role. 

Gamification data import  Web services for integrating gamification mechanism 
into other applications, produced either by SmartH2O or 
by third parties. 
Web-Service interface for importing data conforming to 
the SmartH2O gamification model (e.g., user action 
logs in business applications, users’ achievements in 
mobile digital water games, etc.). These data will be 
integrated into the SmartH2O database. 

Gamification user 
scoring mechanism 

Rules for converting users’ action logs into gamification 
scores publishable in a GUI, e.g., participation scores, 
reputation scores, achievements, badges etc. 

Gamification data export Web services for integrating gamification mechanism 
into other applications, produced either by SmartH2O or 
by third parties. 
Export gamification services permit one to query user’s 
profiles and multiple attributes related to a user’s 
gamification scores. 

First implementation for 
models of user 
behaviour 

Component implementing models and algorithms to 
predict how user consumption is influenced by: 

• Changes in water availability. 
• Changes in pricing taken from literature or 

preliminary results. 
• Social awareness indicators. 
• Peer group pressures. 

An input-output interface will be developed to allow 
users to see the output of the user models against 
different values of the inputs. 



 
SmartH2O-Delivery management plan and testing specification                 Page 25 D6.1 Version 1.7 

 
 

Delivery 
Date 

Release 
Version  

Features to be delivered Functionality overview 

M24 2.0 Mobile game app for social 
awareness 

First version of a mobile application extending the 
board game promoting increased water saving 
awareness in users. It connects the physical 
gaming activities with the digital game app to 
increase user engagement. It is connected with 
the SmartH2O portal through the digital water 
gamification connector. 

Digital game connector Service based interface permitting the import and 
export of data between the SmartH2O platform 
and the mobile game apps for water awareness; 
enables the provision of a uniform and integrated 
experience spanning all the activity of the water 
users, from the business applications (e.g., the 
gamified bill portal) to the social awareness 
gaming activities. 

SmartH2O Console: 
gamification analytics for 
water managers 

GUI with a dashboard for the water utility 
community manager to inspect the dynamics of 
the gamification actions performed by the users, 
understand activity levels, identify 
influential/outstanding users. This GUI is a first 
instance of the SmartH2O Console that will be 
delivered in a fully integrated version in release 
3.0; it will be restricted to the gaming and portal 
actions of the users. 

Digital gamified bill First version of the online and mobile application 
that transforms the customer bill of a company into 
a gamified solution supporting social awareness to 
promote water saving. The online application is 
integrated into the SmartH2O portal and the 
mobile app is connected through the digital water 
gamification connector. 

GIS data import Possibility to integrate into the SmartH2O platform 
GIS data about the area where utility consumers 
reside.  

GIS-enhanced gamified  
consumer GUI 

Possibility of showing consumers the consumption 
data onto a map, so that they can appreciate their 
consumptions status with respect to their 
neighbourhood.  

GIS-enhanced SmartH2O 
Console 

Possibility of showing to utility managers the 
consumption data and respective analytics also 
onto a map, so that they can appreciate their 
distribution of consumption patterns over the area 
managed by the utility company. 

Agent-Based Modelling Component implementing agent-based models. 
The agent-based models will be used to simulate 
the whole district of water users, by simulating the 
simultaneous actions and iterations of individual 
water. The agent-based models will be also used 



 
SmartH2O-Delivery management plan and testing specification                 Page 26 D6.1 Version 1.7 

 
 

in combination with data acquisition components 
in order to compare the desired behaviour of the 
socio-technical system against the actual one, 
with the aim of proposing corrective actions to the 
water managers (policy design and control). A 
graphical user interface will be developed to allow 
users (e.g., water utilities and municipalities) to 
easily adopt the implemented models. 

Price Modelling Component implementing user simulation 
behaviour in response to price incentives taken 
from water demand models or meta-analysis of 
EU price elasticities of water demand. 

Connector to TWUL portal Connector to SmartH2O platform instantiated in 
the TWUL portal for monitoring end-user 
performance indicators for water savings. Through 
this connector the TWUL end-user will access 
his/her specific water consumption data. 

Connector to SES portal Connector to SmartH2O platform instantiated in 
the SES portal for monitoring end-user 
performance indicators for water savings. Through 
this connector the SES end-user will access 
his/her specific water consumption data. 

Table 4: Release content of version 2.0 of the SmartH2O platform 

 

M36 3.0 SmartH2O APIs This component will be the documented set of 
APIs usable by third parties to incorporate 
SmartH2O functionalities in external business 
applications 

SmartH2O Console: Policy 
evaluation 

Component of the SmartH2O Console presenting 
a dashboard for Water Utility containing user 
projected response based on: 
- Social awareness indicators, Changes in 

pricing models 

SmartH2O Console: Historical 
data examination 

Component of the SmartH2O Console presenting 
a temporal analysis of interdependent data 
regarding: 
- Meteo condition 
- User water consumption 
- User profiles 
- User geographical location 

Table 5: Release content of version 3.0 of the SmartH2O platform 

 



 
SmartH2O-Delivery management plan and testing specification                 Page 27 D6.1 Version 1.7 

 
 

7. Testing strategy 
 
The Testing Strategy presents the testing procedures that will be performed in order to 
release the SmartH2O platform. Testing is performed over the artefacts – components or 
services – that constitutes the SmartH2O releases and platform as a whole. Each release is 
essentially composed by SmartH2O applications – including automatic and human tasks, 
various components and SmartH2O platform core services.  The releases will be tested 
according to a double approach: by the component developer and by the platform integrator.  
A typical scenario involves components providers that develop component which are further 
aggregated and orchestrated with the main platform. In this case the Provider develops an 
artefact that are used by a Consumer (platform integrator) for the implementation of a specific 
module.  
Once the components are tested these are delivered to the Integrator Partner (SETMOB) for 
packaging, in this sense the Integrator partner is the Consumer of the component. Also, the 
Integrator partner has the role of developer of the core services of the SmartH2O platform. 
Therefore, testing procedure has been organised in there main phases: 

• Artefact tests: having the objective to find possible defects of each artefact of the 
SmartH2O platform. This is the procedure applied in Unit test described in the 
following section. 

• Integration tests: having the objective to tests the “coexistence” (the proper 
installation and operation) of the components developed by the SmartH2O partners. 
The integration tests are in charge to the Integrator partner. 

• End to End functional tests: having the objective to test an entire workflow, by 
testing a process from the very beginning all the way to the end. 

All the testing phases are supported by the Bugzilla [Bugzilla] infrastructure and in particular 
by the section by the section Bugs, releases and feedbacks tracking system. 

7.3 Unit testing 

Unit testing tests an artefact - component or service - before its official release, by means of 
functional tests performed to check the correctness of the component behaviour, following its 
functional specifications. Unit testing is not standardized within the SmartH2O project, is 
applied to single components, interface and application. 
Unit testing tests a component before its official release, by means of functional tests 
performed to check the correct component behaviour, following its functional specifications. 
Unit testing is not standardized within the SmartH2O project, and is carried on under the 
responsibility of the component owner. 

7.4 Integration testing 

Integration testing tests the integration of a specific kind of artefact - component or service. 
Installation is checked in agreement with the installation requirements defined in the 
corresponding Release Note. Integration test is performed as a final test before SmartH2O 
platform packaging. Integration testing is under the responsibility of the partner in charge of 
the Integration. 

7.5 End to End functional testing 

End to End Functional testing verifies the functionality of the integrated component and 
services deployed on SmartH2O Platform. It has a dependency on the results of artefacts 
test.  SmartH2O modules, decomposed in use cases, are exploited using the User Interface 
as test sessions. Functional testing is performed mainly by the Integrator partner, supported 



 
SmartH2O-Delivery management plan and testing specification                 Page 28 D6.1 Version 1.7 

 
 

by all the other partners involved.  
Any testing session calls one of the entry points of the prototype and checks desired 
response. 
Component or service testing can be in charge of component and service owner and/or 
Platform integrator. Initial test is performed by component or service owner for smooth 
testing. The completed functional testing is performed by platform integrators supported by 
component or service owner for all the components and services involved. 
The relationship between use cases and test sessions could not be one-to-one, because a 
complex use case could be made by several distinct ways to interact with the SmartH2O 
Platform, and each one must be subject to a specific testing session. 

7.6 Testing tools 

Specific software tools will be used for automating the testing process of the SmartH2O 
platform and its components. The purpose is to control the execution of all the necessary 
tests and to confront the actual outcomes with predicted outcomes. Automating tools can 
automate significant parts of the repetitive tasks foreseen by the testing process or add 
additional testing that would be difficult to perform manually. 
 

7.6.1 GUI testing 

User interface (UI) testing is the process used to test if the application graphic interface is 
functioning correctly. UI testing can be performed manually by a human tester, or it can be 
performed automatically with the use of a software program as Selenium. 

Selenium allows scaling for a large number of tests, or for tests that must run in multiple 
environments. It also allows to run different tests simultaneously on different remote 
machines. 

7.6.2 Web service testing 
In the architecture of the SmartH2O platform, the main role of the web services is achieving 
the component integration. When the number of the web services becomes significant, a key 
issue is ensuring their functional quality while avoiding to introduce opportunities for error or 
failure. Such automated tools for web service testing are: 

SoapUI [SoapUI] represents a functional testing solution for web services. SoapUI allows 
creating and running automated functional, regression, compliance, and load tests. In a 
single test environment, it provides complete test coverage and supports all the standard 
protocols and technologies. 

JMeter  [JMeter] is an automated tool to test performance both on static and dynamic 
resources. It w be used to simulate a heavy load on a server, group of servers, network or 
object to test its strength or to analyze overall performance under different load types. 
 

7.6.3 Component testing 
JUnit [Junit] is a open source unit testing framework for the Java programming language. 
This framework will be integrated in the development of the business logic within the platform 
components. It allows the developer to incrementally build test suites to measure progress 
and detect unintended side effects. Tests can be run continuously. Results are provided 
immediately. 
 



 
SmartH2O-Delivery management plan and testing specification                 Page 29 D6.1 Version 1.7 

 
 

7.6.4 Performance testing 

Webserver Stress Tool [PAESSLER] is a HTTP-client/server test application designed to 
detect critical performance issues at the web sites level thus ensuring optimal experience for 
the users. By simulating the HTTP requests generated by a lot of simultaneous users, this 
tool will test the consumer and water utility portal performance under normal and excessive 
loads. 



 
SmartH2O-Delivery management plan and testing specification                 Page 30 D6.1 Version 1.7 

 
 

8. Conclusions and future work 
This deliverable has presented the current status of the work regarding the ground for an 
effective collaboration environment for developing, testing and releasing the SmartH2O 
software platform, which is the output primarily of WP6 platform Implementation and 
Integration. It has requested coordination and integration of input from all the active work 
packages. 
The ongoing actions consider: 

• Finalizing and delivering the detailed architecture design of the SmartH2O platform 
describing all platform modules (e.g., components, services, and applications), 
communication protocols, and underlying information and data models. 

• Implementing the Continuous Integration software development environment as a 
must-have condition for collaboration projects in a loosely coupling environment. 
Continuous integration tools allows testing, compiling, installing and auditing by an 
automated build, allowing teams to detect problems as early as possible. 

• Finalizing and fine-tuning for the SmartH2O data base schema and instance. 
• Initiating the development for the Smart Meter data acquisition component. This 

component will ensure the population of the database with test data from the demo 
use cases at TWUL and SES. 

• Initiating the development of the Web GUI for allowing end-users to login and register 
their data not provided by sensors. (e.g., data for identifying houses, users, billing 
prices etc.) 

• Initiating the development of the Web services for integrating gamification 
mechanism into other applications, produced either by SmartH2O or by third parties. 

• Initiating the development of the Web-Service interface for importing data conforming 
to the SmartH2O gamification model (e.g., user action logs in business applications, 
users’ achievements in mobile digital water games, etc.). 

Future work will address the development and testing of the components included in the first 
prototype (R1) of the SmartH2O platform. The modules of the first prototype will be 
continuously compiled, installed, configured, and deployed. In the same time, feedback on 
the platform’s usability, coming from the validation case studies will be considered to 
permanently improve the prototype’s capabilities. 
 



 
SmartH2O-Delivery management plan and testing specification                 Page 31 D6.1 Version 1.7 

 
 

9. References 
• [Ambler04] Scott W. Ambler, The object primer: Agile model-driven development with 

UML 2.0, 2004, Cambridge University Press 
• [Bitbucket] Free source code hosting for Git and Mercurial. [Available online at 

https://bitbucket.org] 
• [Bugzilla]. The Web-based general-purpose bug tracker and testing tool. [Available online 

at http://www.bugzilla.org] 
• [BCW12] Marco Brambilla, Jordi Cabot, Manuel Wimmer, Model-Driven Software 

Engineering in Practice (Synthesis Lectures on Software Engineering) Paperback – 
September 26, 2012 

• [BF14b] Marco Brambilla, Piero Fraternali: Large-scale Model-Driven Engineering of web 
user interaction: The WebML and WebRatio experience. Sci. Comput. Program. 89: 71-
87 (2014) 

• [CBB03] Piero Fraternali, Marco Brambilla, Aldo Bongio, Sara Comai Stefano Ceri 
Designing Data-Intensive Web Applications (Dec 1, 2003) 

• [Carrol95] Carroll, J.M. (1995). Introduction: The Scenario Perspective on System 
Development. In J.M. Carroll (ed.) Scenario-Based Design: Envisioning Work and 
Technology in System Development. New York: John Wiley & Sons. 

• [Cockburn01] Cockburn, A. (2001). Writing effective use cases. Addison Wesley, 2001. 
ISBN 0-201- 70225-8. 

• [cPrime] cPrime Inc.. Introduction to SCRUM for Project Managers. [Available online at 
http://www.slideshare.net/montemontoya/agile-scrum-essentials-for-project-management] 

• [Chen76] Peter P. Chen: The Entity-Relationship Model - Toward a Unified View of Data. 
ACM Transactions on Database Systems (TODS) , Volume 1, pages 9-36 

• [FB2014] Marco Brambilla, Piero Fraternali, Interaction Flow Modelling Language: Model-
Driven UI Engineering of Web and Mobile Apps with IFML (The MK/OMG Press) 
Paperback – December 14, 2014 ISBN-13: 978-0128001080  ISBN-10: 0128001089 

• [HIB] Hibernate ORM. Idiomatic persistence for Java and relational databases. [Available 
online at http://hibernate.org/orm/] 

• [IBM-SOA] [Available online at http://www.ibm.com/developerworks/library/ws-soa-
design1] 

• [ISO99] ISO 13407. Human-centred design processes for interactive systems. ISO, 1999. 
• [Jenkins]. The leading open-source continuous integration server. [Available online at 

http://jenkins-ci.org] 
• [JMeter] Apache JMeter. A 100% pure Java application for testing functional behaviour. 

[Available online at http://jmeter.apache.org] 
• [JUnit] About Junit. [Available online at http://junit.org] 
• [Maven]. The software project management and comprehension tool. [Available online at 

http://maven.apache.org] 
• [Nexus]. Repository manager for artefacts. [Available online at 

http://www.sonatype.org/nexus] 
• [NOREX] NOREX – The Scrum Approach [Available online at 

www.norex.net/news/thescrumapproachjune2011)] 
• [OMG-SOAML] [Available online at http://www.omg.org/spec/SoaML] 
• [OMG-UML] [Available online at http://www.omg.org/spec/UML/] 
• [OMG-IFML] [Available online at http://www.omg.org/spec/IFML/] 
• [PAESSLER] Web Server Stress Tool. Performance, Load and Stress-Test for Web 

Servers.[Available online at http://www.paessler.com/webstress] 



 
SmartH2O-Delivery management plan and testing specification                 Page 32 D6.1 Version 1.7 

 
 

• [Siegel05] Siegel, J. (2005). Introduction to OMG UML. OMG. [Available online at 
http://www.omg.org/gettingstarted/what_is_uml.htm] 

• [Spring] Spring Framework. Core support for dependency injection, transaction 
management, web applications, data access, messaging, testing and more. [Available 
online at http://projects.spring.io/spring-framework/] 

• [Selenium]. Web brower automation. [Available online at http://www.seleniumhq.org] 
• [SoapUI] The Swiss-Army knife for testing. [Available online at http://www.soapui.org] 
• [Sonar]. Continuous code quality management. [Available online at 

http://sonarsource.com] 
• [ThoughtWorks] Continuous Integration [Available online at 

http://www.thoughtworks.com/continuous-integration] 
 
 
 


