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Executive Summary 

The design and the assessment of policies and strategies for urban water demand 
management at the household level require to build user models that quantitatively describe 
how water demand is influenced and varies in relation to exogenous determinants (e.g., 
climate conditions), socio-psychographic features (e.g., age, income, household features), 
social pressure, water restrictions, water tariffs, and reciprocal influence of these factors. 
These models should be then used to foresee the consumers’ response to different water 
demand management scenarios and, if models estimating different water demand for 
different types of users are built, consumer-tailored water demand management strategies 
(WDMS) can be proposed in order to effectively modify the consumers’ attitude for pursuing a 
water saving behavior.  
This deliverable presents a set of algorithms to derive, directly from metered water 
consumption data and consumers’ socio-psychographic data retrieved from the gamified 
applications, mathematical models describing the users’ consumption behavior. Specifically, 
this deliverable addresses the following three main steps for user behavioral modeling: 

• water end-use characterization, which aims at decomposing the aggregate (i.e., 
whole household) high-resolution water flow data collected from a single 
measurement point into water end use categories (e.g., shower, toilet flush, 
dishwasher), in order to understand how, when and where water is used. Two novel 
disaggregation algorithms, developed in the SmartH2O project, are discussed.  

• variable selection, which aims at identifying (based on water consumption data, a 
set of socio-psychographic features and other external factors) the main drivers 
influencing water consumption at an individual (household) level. Several feature 
extraction algorithms have been used to tackle the variable selection problem.  

• model learning, which aims at constructing a model that allows to predict the 
consumption profile of water users as a function of the determinants identified in the 
variable selection step. Bayesian Regressor and Decision Tree classifiers are used 
to tackle the model learning problem. 

At this stage of the project, the user is modeled as an autonomous entity, thus social 
interactions and influence/mimicking mechanisms are not considered in the modeling phase. 
These mechanisms will be considered in Tasks T3.3 and T3.4 of Work Package 3, in order to 
develop an agent-based model that will be used to simulate whole districts of water users and 
to understand how some user types (leaders/influencers) can stimulate a behavioural change 
on other users. 
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1. Introduction 

1.1 Insights on residential water management 

Individual and collective behavioural responses to different water conservation policies acting 
on the demand side of residential water consumption (the so called Water Demand  
Management Strategies, WDMS) might significantly vary within the same urban context 
depending on economic drivers as well as socio-psychological determinants. Therefore, in 
order to design and to assess the effectiveness of alternative WDM policies, it is essential to 
build models that quantitatively describe how the water demand is influenced and varies in 
relation to exogenous determinants (e.g., climate conditions), socio-psychographic features 
(e.g., age, income, household features), social pressure, water restrictions, water tariffs, and 
reciprocal influence. 
 
High spatial (household) and temporal (up to few seconds) resolution water consumption 
data gathered by smart meters provide a detailed user consumption profile. This enables an 
accurate characterization of the water consumption share and patterns of end-uses, which, in 
turn, constitute the basis for the mathematical modeling of individual and collective user 
behaviors. In summary, residential water management comprises the sequential phases 
represented in the flowchart in Figure 1, namely: data gathering, water end-use 
characterization, user modeling and WDMS design, implementation and assessment in terms 
of water savings. Within the SmartH2O project, Work Package 3 addresses the second and 
the third block of the flowchart in Figure 1 (i.e., water end-use characterization and user 
modeling), which are briefly described in the following: 

• The water end-use characterization phase aims at decomposing the aggregate 
(i.e., whole household) water consumption data collected from a single 
measurement point into water end use categories, to understand how, when and 
where water is used. Beside using this information for building mathematical 
models of the user behavior, the generated knowledge can be also directly 
provided to customers, municipalities and water utilities, so that: 

i. household’s components have a detailed knowledge on their water usage. 
For instance, through the SmartH2O platform, customers can log into a web 
page to view their hourly consumption, as well as charts on their water end-
use patterns across major end-use categories (e.g., washing machine, toilet, 
shower, irrigation) and they can be alerted of occurring consumption 
anomalies (e.g., leak events). Furthermore, personalized hints for reducing 
water consumption can be directly delivered by the municipality and the water 
utility; 

ii. customers can be informed on potential savings in differing the usage of 
some water using appliances (e.g., washing machine and dishwasher) to 
peak-off hours, or in replacing low-efficient appliances into high-efficient 
ones, and personalized rewards schemes can be then proposed to stimulate 
customers to adopt water saving actions.   

• The user modeling phase aims at identifying the drivers influencing the water 
consumption, and thus at building mathematical models to predict water demand at 
the individual (household) level based on socio-psychographic features of the 
consumers and on exogenous variables (e.g., climate conditions, social pressure, 
awareness campaigns). Thus, the inputs of the user behavioural models are the 
user attributes and the exogenous variables, while the prediction of the household 
water consumption is the resulting output. 
Depending on the type of information included among the input set and the 
structure of the model, two groups of user models can be identified among the 
existing works: (i) the single-user models, which describe the user's consumption 
behavior considering the user as an isolated entity, thus not including social 
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interactions and influence/mimicking mechanisms in the inputs; and (ii) the multi-
user models that include dynamic interactions among users. In this deliverable, 
only the algorithms for modeling the single-user behaviour are considered, while 
the development and implementation of multi-user models will be the subject of the 
next deliverables D3.3 and D3.4. 

 

1.2 Deliverable contribution 

In this deliverable, we present two novel algorithms for end use characterization and a two-
stage data-mining approach to model single-user consumption behaviors at the household 
level. The developed disaggregation and user profiling algorithms are tested against data 
available in the literature or gathered in previous studies focused on water user behavioural 
modeling. Based on the single-user models and on the behavioral data collected from 
questionnaires and the social gamified platform developed in WP4, multi-user models 
including the dynamic interactions among users will be eventually developed (as part of the 
next deliverables D3.3 and D3.4) by exploiting agent-based modeling platforms.    
 
It is worth mentioning that the final user models should also be able to describe the future 
consumers’ behavior in face of water price and rewards changes. The latter is the main goal 
of Work Package 5 (“Saving water by dynamic water pricing”), where econometric models of 
water demand under new pricing and reward policies will be developed, and eventually 
integrated with the consumer behavioural models developed in WP3. 

1.3 Deliverable outline 

The deliverable is organized as follows: 
• Section 2 provides a review on the state-of-the-art algorithms for water end-use 

disaggregation and on previous studies on water user behavioural modeling. 
• Section 3 describes two novel algorithms for water end-use characterization 

developed within the SmartH2O project. The performance of the developed 
algorithms are tested against high-resolution energy consumption data available in 
the literature and against water consumption data gathered in the WEEP (Water 
End Use and Efficiency Project) project [Heinrich07], a study which was conducted 
in New Zealand in 2005-2007.  

• Section 4 describes a novel approach to model the single-user consumption 
behavior at the household level. The approach is based on a two-step procedure: 
(i) identification of the most relevant determinants of users’ consumption profiles; 
(ii) construction of a model that allows predicting the consumption profile of water 
users as a function of the determinants identified in the previous step. Since a 
database with water consumption data and the associated users’ features is not 
available yet, the H2ome Smart project dataset [Anda12] was used to assess the 
performance of the proposed user modeling algorithm.  
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Figure 1: Flowchart presenting the sequential phases of Water Demand Management 
at the residential scale. 
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2. State of the art on water end-use characterization 
and user modeling 

2.1 Disaggregation algorithms for end-use breakdown 
characterization 

Several studies aiming at disaggregating water flow data collected from high-resolution smart 
meters into water end use categories have been conducted in the last two decades (see 
Table 1 for a summary of recent water end use studies). The summary reported in Table 1 
shows that three different algorithms were basically used for water end-use disaggregation in 
past studies, namely: Trace Wizard® (a commercial flow trace analysis toolkit developed by 
Aquacraft, Inc.); Identiflow® (a tool developed by WRc, a research organization based in 
United Kingdom) and HydroSense (a water disaggregation approach originally proposed in 
[Froehlich09]). Strengths and weaknesses of each approach are briefly described in the next 
paragraphs. 
 

2.1.1 Trace Wizard® 
Trace Wizard applies a decision tree algorithm that interprets data based on some basic flow 
boundary conditions (e.g., minimum/maximum volume, peak flow rate, duration range, etc.). 
The disaggregation process requires completing the following tasks: 

• Conduct a detailed water appliance/fixture stock inventory audit for each household 
to determine the efficiency rating of each household appliance/fixture;  

• Household’s occupants should complete a diary of water use events over a one-
week period to gain information on their water use habits; 

• Analysts use water audits, diaries, and sample flow trace data for each household to 
create specific templates that serve to match water end uses patterns based on 
some basic flow boundary conditions. 

• Based on the developed templates, stock survey audit, diary information and 
analysts’ experience, the individual water end uses are disaggregated. 

Due to the human resource requirement, the overall process is extremely time and resource 
intensive, and it relies on the analyst’s experience in understanding flow signatures. 
Furthermore, it has been observed that the prediction accuracy of Trace Wizard is 
significantly reduced when more than two events occur concurrently [Mayer99]. 
 

2.1.2 Identiflow® 
Similar to Trace Wizard, Identiflow is based on a decision tree algorithm to disaggregate the 
total water consumption into end-use categories. Identiflow uses fixed physical features of 
various water-using devices (e.g., volume, flow rate, duration, etc.) to make different 
decisions for categorization. Although Identiflow has shown better performance than Trace 
Wizard, its classification accuracy strongly depends on the physical features used to describe 
each fixture/appliance, and two different water events could be placed into the same category 
if they enjoy similar physical characteristics. Similarly, the accuracy of Identiflow significantly 
decreases if old water-using appliances are replaced by modern ones, whose physical 
characteristics might be completely different compared to the old ones.  
 

2.1.3 HydroSense 
HydroSense is based on a continuous analysis of the pressure within a home water 
infrastructure. Water end use events are classified based on the unique pressure waves that 
propagate to the sensors when valves are opened or closed. Specifically, when a valve is 
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opened or closed (be it a bathroom faucet or a mechanical valve in a dishwasher), a pressure 
change occurs and a pressure wave is generated in the plumbing system. Based on the 
pressure wave (which depends on the valve type and its location), water end-use events are 
classified by using advanced pattern matching algorithms and Bayesian probabilistic models. 
The main disadvantage of the HydroSense system is due to the large number of sensors, 
which should be connected to each appliance/fixture to build the dataset for model 
calibration. Therefore, since a distributed sensing network is required for calibration, the 
approach cannot be considered totally non-intrusive and its portability to a wide urban context 
would entail costs and privacy issues. Furthermore, the installation of a number of sensors 
can hardly be accepted by house occupants.  
 

2.1.4 SEQREUS algorithm 
Another algorithm to disaggregate water flow data into end use categories has been 
developed within the SEQREUS project [Beal11]. The SEQREUS approach makes use of 
machine learning tools, i.e., Hidden Markov Models (HMMs) and the Dynamic Time Warping 
(DTW) algorithm, and it is basically used to refine the results given by other disaggregation 
algorithms (e.g., Trace Wizard). Specifically, SEQREUS approach works as follows: 

1. Water flow data are first broken down into nine different water end use categories 
(namely, shower, tap, dishwasher, clothes washer, toilet, bathtub, irrigation, leak and 
inconclusive) using Trace Wizard, and the disaggregated data are used for training 
Hidden Markov Models (step 2); 

2. Based on the training data (obtained at Step 1), compute eighty different Hidden 
Markov Models describing the different water end use categories (excluding the 
inconclusive event); 

3. Physical characteristics for each end use event category are used to refine the 
estimate given by the HHMs (e.g., any shower event with a volume less than 7 liters 
or any bathtub event with duration less than 4 minutes is placed in the inconclusive 
event for future analysis); 

4. Use DTW algorithm to determine if any event in the inconclusive dataset is similar to 
an event in the clothes washer or dishwasher set. DTW is employed because of its 
ability to search patterns existing in series which have a clearly defined patterns 
(e.g., the clothes washer and dishwasher cycles); 

5. Use time of day probability to assign inconclusive events to an end-use category. 
 

2.1.5 Electric energy disaggregation 
Unfortunately, none of the disaggregation algorithms described so far is completely 
automatic, but all do require some level of interaction with the user (intrusive monitoring). 
Nevertheless, in the field of electric energy, there is a rich literature on automatic 
disaggregation methods (known as Non Intrusive Appliance Load Monitoring (NIALM) 
algorithms) aiming at decomposing the aggregate household energy consumption data 
collected from a single measurement point into device-level consumption data without 
requiring a limited interaction with the user. The first algorithm for NIALM was proposed by 
Hart in 1992 [Hart92]. Hart’s approach is based on the segmentation of the aggregate power 
signal into successive steps, which are then matched to the appliance signatures. However, 
this method is not able to detect multistate appliances and it is neither able to decompose 
power signals made of simultaneous on/off events on multiple appliances. Since Hart’s 
contribution, the problem of Nonintrusive Appliance Load Monitoring has been extensively 
studied in the literature. The survey papers [Zoha12] and [Zeifman11] give a complete review 
on the state-of-the-art of NILAM methods, which can be classified into two main categories: 
optimization based and machine learning based approaches. The methods based on sparse 
coding [Figueiredo13, Dong13] and integer programming [Suzuki08,Camier13] belong the 
first category, while the approaches discussed in [Srinivasan06, Zia11, Parson12, 
Johnson13], which make use of Hidden Markov Models and Artificial Neural Networks belong 
to the second category.  
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As already mentioned, the energy disaggregation algorithms require a limited interaction with 
the user (i.e., a monitoring period less intrusive w.r.t. the one required by the methods for 
water end-use characterization). In order to transfer this property also to water end-use 
characterization, two novel disaggregation algorithms (an optimization based method and a 
machine learning based method) have been developed within the SmartH2O project. These 
algorithms, described in Section 3, can be used to disaggregate both water and energy data 
and they are able to accurately decompose multiple overlapping device signals, thus 
overcoming one of the major drawback of the algorithms commonly used for water 
disaggregation. 
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2.2 Water user modeling studies  

The user modeling phase (third block in Figure 1) is composed by two steps: (i) user profiling, 
which consists in the identification and selection of significant inputs for the model (i.e., 
through variable selection techniques) and (ii) model structure identification, parameter 
calibration and validation. The studies limiting their extent to the variable selection phase can 
qualitatively inform water managers, utilities and decision makers about current users' habits 
and consumption trends, while the ones completing the second phase provide tools which 
support policy design and decision making processes, allowing a what-if analysis as well as 
scenario simulation and analysis. The purpose of this section is to classify the state of the art 
literature about single-user behavioural modeling by distinguishing between those studies 
stopping to variable selection stage and those completing the user behavioural modeling 
process.  
 

2.2.1 User profiling   
A first level of the existing works on single-user behavioural modeling is given by the studies 
that stop at the very beginning of the user-profiling phase. Such studies simply try to deepen 
the understanding of the breakdown structure of water end uses (i.e., the ones disaggregated 
in the water end-use characterization phase), in order to identify consumption patterns and 
trends [Loh03, Roberts05], and to build a user consumption profile that constitutes the 
baseline for identifying the most promising areas where conservation efforts may be polarized 
[Gato11]. Although these studies do not directly consider drivers for water consumption, and 
thus they cannot be used to design policies acting on users' behavioral drivers, the 
interpretation of the water end uses and the profiles constitute an essential basis for 
estimating the savings achievable by acting on the technical side of the problem, e.g., on the 
efficiency of water using fixtures [Gato11], or in estimating the difference in daily water 
consumption due to seasonality [Gato11]. 
 
Other single-user modelling studies, in turn, push their aim beyond the analysis of end uses 
and look for correlations between a set of variables belonging to a specific domain (e.g., 
dwelling features domain, economic domain, social domain) and water consumption, thus 
approaching user profiling through variable selection and assessment with a limited, pre-
defined variable set. In [Fox09], for instance, statistical tools (like univariate analysis, 
multivariate analysis and ANOVA) were applied to assess the relationship between physical 
characteristics of the dwelling (e.g., number of rooms, type, presence of garden) and water 
consumption. Although a water demand forecasting model was not developed in [Fox09], 
finding the interlinks and dependencies between water consumption and household features 
constitutes an advantage to forecast water demand for new housing development, where 
socio-demographic and economic information regarding the (future) inhabitants is therefore 
not available. Other contributions, like [Olmstead07] and [Olmstead09], look for correlations 
between purely economic factors and water consumption, as water price and incentives, in 
order to accurately estimate savings due to price-dependent policies or retrofit efficiency 
campaigns. Unfortunately, the main shortcoming of [Fox09], [Olmstead07] and [Olmstead09] 
is that they consider only a limited set of variables influencing residential water consumption 
and thus they not provide an accurate estimate of the actual most impacting variables. 
 
In contrast, many studies attempted to build user profiles that include variables from different 
domains. Some of them consider a variety of drivers, but focus on specific water uses. For 
instance, [Syme04] built a structural equation model upon physical, socio-demographic, 
lifestyle and attitude variables to infer their influence on external water use for gardening. 
Coherently, [Makki13] found that, as a result of a multi-regression model, household makeup 
characteristics and devices efficiency are the dominant drivers of water consumption for 
showering. Some other recent works (e.g., [Suero12],  [Willis11], and [Talebpour14]) consider 
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the problem from a holistic perspective, thus linking a variety of key factors to the total 
household consumption. 

2.2.2 User behavioral modeling for water demand forecasting 
To the best of the authors’ knowledge, only few pilot studies and experiments have produced 
prototype models to inform demand management, resulting in the only attempts to complete 
both the phases of variable selection and behavioral modeling mentioned at the beginning of 
this section.  
 
In [Gato06], a multi-variable regression approach is used to predict the demand of water end 
uses from tailored demographic variables. Predictor variables included the number of adults, 
the number of children less than 12 years of age, and appliance information, such as 
ownership of a dishwasher, the type of clothes washer and the fraction of dual flush toilets in 
the household. Significant prediction models were produced for the following water end uses: 
total internal demand; toilet demand; shower demand; clothes washer demand; dishwasher 
demand; and tap demand. In [Blokker10], the authors developed a stochastic end-use model 
based on demographics, end-use category frequency of use, flow duration and event 
occurrence likelihood to predict water demand patterns at the residential scale and with a 
high time resolution (1 second), resulting in a tool able to explain large part of the variance for 
the observed consumption data just based on statistical information on users. More recently, 
a forecasting model built upon smart metered end-use data gathered during a two-year end-
use study in South East Queensland (Australia) has been developed in [Bennet13]. This 
model couples non-parametric statistical tests and artificial neural networks to: (i) identify key 
water consumption determinants and (ii) forecast residential water consumption, achieving 
moderate forecast accuracy levels (R2 coefficient ranging from 21% to 60% for the diverse 
water end-use categories). 
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3. SmartH2O algorithms for end-use disaggregation 
This section provides a description of two novel disaggregation algorithms that can be used 
to decompose both water and energy consumption data into end use categories. The Section 
is organized as follows: the problem of data disaggregation is formalized in Section 3.1; an 
optimization based and a machine learning based algorithm are described in Section 3.2 and 
Section 3.3, respectively. High-resolution energy consumption data available in the literature 
and water consumption data gathered in the WEEP (Water End Use and Efficiency Project) 
research [Heinrich07] have been used to assess the performance of the developed 
disaggregation algorithms (Sections 3.4 - 3.6). 

3.1 Problem formulation 

Consider the situation where N different water-using appliances/fixtures (L!,… , L! ) are 
available in a house. Each appliance L! has C! operating modes and let B!

(!) be the water 
demand of the i-th appliance at the j-th operating mode (with j = 1,…, !C! ). The water 
consumption y!(t) of the i-th appliance/fixture at time t is then given by: 

y!(t) = B!
(!) B!

(!) … B!
(!!)

x!! (t)
x!! (t)
⋮

x!
!! (t)

+!! ! , 

with !! !  being an error term. The time-varying variables x!! t ,… , x!
!! (t) can be either 0 or 

1, and they satisfy the equality constraint x!
! t = 1!!

!  (i.e., each water appliance can 
operate at a single mode at each time instant t). 
 
Let ! !  be the aggregate water consumption measured by the smart meter at time t, which is 
given by:!

y(t) = y!(t)
!

!
+ ! ! , 

where ! !  is a measurement noise. Given a sequence !!!  of !!  observations of the 
aggregate water consumption readings ! !  (with t=1,…,!!!), our goal is to reconstruct the 
actual water consumptions !! !  (with t=1,…, !!! ) of each appliance/fixture based on the 
household aggregate water flow data !!!.  
A training dataset !!! is assumed to be available. The training set consists of the 
observations of the water consumption profiles of each appliance/fixture available in the 
house. An intrusive period is needed to construct the set !!!. During this period, the patterns 
of the water consumption of each appliance are observed, and information on time-of-day 
probability characterizing the usage of each appliance/fixture can be also gathered. 

3.2 Optimization based algorithm 

The first water disaggregation algorithm developed within the SmartH2O is based on sparse 
optimization and it is described in this section. The developed algorithm exploits the following 
assumptions: 

• A1: A rough knowledge of the water consumption of each appliance/fixture at each 
operating mode (i.e., the terms B!

(!)) is supposed to be available. For instance, the 
terms B!

(!) can be evaluated from the training dataset !!! through k-means clustering 
[Likas03].  
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• A2: The water consumption profiles of each appliance/fixture are piecewise constant 
over time (as it is typical for many residential water-using appliances/fixtures).  

 
The ideas underlying the developed disaggregation algorithms are now described. 
 

3.2.1 Standard least-squares estimate 
In order to estimate the water consumption !! !  of each appliance/fixture at the time sample 
t, the time varying parameters !!

(!) !  might be computed by solving the standard least-
squares problem: 

min
!!
! ! ,…,!!

!! (!)
!!!,…,!!
!!!,…,!

! ! − !! !, !!
!

!!!

!

,
!!

!!!
(1) 

 
where !! !, !!  denotes the model of the water usage of the i-th appliance at time t, i.e.,  

!! !, !! = B!
(!) B!

(!) … B!
(!!)

x!! (t)
x!! (t)
⋮

x!
!! (t)

 

Unfortunately, the least-squares optimization problem (1) is an overparametrized problem, 
since it involves more unknown parameters than measurements. As a consequence, 
overfitting occurs in computing the time varying parameters !!

(!) !  through a simple least-
squares approach. A possible solution to overcome this problem is to introduce regularization 
terms (or equivalently penalty terms) terms in (1) in order to: 

• enforce each appliance at operating at a single mode at each time instant; 
• enforce water usage patterns !! !, !!  to be piecewise constant over time, according 

to assumption A2. 
 

3.2.2 Adding regularization 

In order to exploit the information that: (i) the parameters !!
(!) ! ,… , !!

(!!) !  can be either 0 or 
1; (ii) each appliance/fixture can only operate at a single mode at each time instant, the 
following regularized problem can be solved instead of (1): 
 

min
!!
! ! ,…,!!

!! !
!!!,…,!!
!!!,…,!

! ! − !! !, !!
!

!!!

!

+ !!

!!
(!) !
!!
(!) !
⋮

!!
(!!) ! !

!!

!!!

!

!!!
,

!!

!!!
2

!. !.!!!!! ! ! ≥ 0,!!!!!!!!!! !! ! ! = 1
!!

!!!
,"""""! = 1,… ,!; !!!! = 1,… ,!! ,

 

 
where ∙ ! denotes the 0-norm of a vector (i.e., number of nonzero elements). Note that, on 
one hand, the second term in the objective function of Problem (2) aims at minimizing the 
number of nonzero elements in the vector !!

(!) ! ,… , !!
(!!) ! . On the other hand, because of 

the constraint !! ! ! = 1!!
!!! , the vector !!

(!) ! ,… , !!
(!!) !  is guaranteed to have at least a 

nonzero element. The parameter !! ≥ 0 is tuned by the user (for instance through cross 
validation, see Section 3.2.6) for balancing the tradeoff between minimizing the fitting error 
(by decreasing the value of !!) and minimizing number of the nonzero elements in the vector 
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!!
(!) ! ,… , !!

(!!) !  (by increasing the value of !!). Because of the 0-norm, Problem (2) is 
nonconvex, and thus difficult to be solved through numerical optimization solvers available in 
the literature. Nevertheless, an approximate solution of Problem (2) can be obtained by 
replacing the 0-norm with the (convex) 1-norm (i.e., sum of the absolute value of the 
elements of the vector). Furthermore, the final estimate can be improved by scaling the 
parameters !!

(!) ! ,… , !!
(!!) !  with nonnegative weights !!

(!) ! ,… ,!!
(!!) ! . This leads to 

the following approximation of Problem (2): 

min
!!
! ! ,…,!!

!! !
!!!,…,!!
!!!,…,!

! ! − !! !, !!
!

!!!

!

+ !!

!!
(!) !

!!
(!) !
⋮

!!
(!!) !

∗

!!
(!) !
!!
(!) !
⋮

!!
(!!) ! !

!!

!!!

!

!!!
,

!!

!!!
3

!. !.!!!!! ! ! ≥ 0,!!!!!!!!!! !! ! ! = 1
!!

!!!
,"""""! = 1,… ,!; !!!! = 1,… ,!! ,

 

 
where ∗ denotes the element-wise multiplication. An appropriate choice of the weights !!

(!) !  
is discussed in Section 3.2.4. 
 

3.2.3 Adding regularization to enforce piecewise constant power 
consumption profiles 
In order to improve the estimate given by (3), we might exploit the additional information that 
the patterns of water consumption are piece-wise constant over time (Assumption A2). In 
order to enforce the estimated water consumption profiles to be piecewise constant, a new 
regularization term can be added to Problem (3), i.e., 
 

min
!!
! ! ,…,!!

!! !
!!!,…,!!
!!!,…,!

! ! − !! !, !!
!

!!!

!

+ !!

!!
(!) !

!!
(!) !
⋮

!!
(!!) !

∗

!!
(!) !
!!
(!) !
⋮

!!
(!!) ! !

+
!!

!!!

!

!!!

!!

!!!
4

+!! !!

!!
(!) ! − !!

(!) ! − 1
!!
(!) ! − !!

(!) ! − 1
⋮

!!
(!!) ! − !!

(!!) ! − 1 !

!!

!!!

!

!!!

!. !.!!!!! ! ! ≥ 0,!!!!!!!!!! !! ! ! = 1
!!

!!!
,"""""! = 1,… ,!; !!!! = 1,… ,!! ,

 

 
with γ! being a tuning parameter playing a role similar to γ!. The terms k! (with i=1,…,N)  are 
a-priori specified nonnegative weights which can be chosen through the method described in 
Section 3.2.5. Note that the infinity norm of a vector (i.e., maximum absolute value among the 
element of the vector) is considered in (4). In this way, if one of the parameters 
x!
(!) t ,… , x!

(!!) t  changes from time t-1 to time t, a variation of the other parameters does 
not change the cost function. Specifically, only the largest time variation among the elements 
of the vector x!

(!) t ,… , x!
(!!) t  affects the cost function.  
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Summarizing, the time-varying parameters x!
(!) t ,… , x!

(!!) t  describing the water 
consumption of each appliance/fixture are computed by solving the regularized (convex) 
optimization Problem (4).  
 

3.2.4 On the choice of the weights !!
! !  

The main idea behind the choice of the weights !! ! ! ,… ,!!
!! !  is the following: if the i-th 

water-using appliance/fixture is likely to operate at mode j at time t, then the parameter !! ! !  
is likely to be equal to 1, while the other parameters !!! !  (with ! ≠ !) are likely to be equal 
to 0. In terms of the optimization problem (4), the parameters !!! !  (with ! ≠ !) should be 
more penalized than !! ! ! , or equivalently, the scaling weights !! ! !  (with ! ≠ !) should 
be higher than !! ! ! . The information on time-of-day probability of the usage of each 
appliance/fixture can be inferred from the training dataset !!!. Specifically, for given i and t, 
the weights !! ! ! ,… ,!!

!! !  can be chosen as follows: 
• Given the training dataset !!!, for each time sample t compute the number of times 

the i-th fixture/appliance is operating at mode j at the time samples t+k24h, where 
k=0,1,-1,2,-2,… Denote the computed number as !!! ! . 

• If !!! ! ≠ 0, the weight !! ! !  is given by the inverse of !!! ! , i.e., !!! ! = !
!!

! !
. 

Otherwise, set the parameter !! ! !  equal to 0. 
 

Note that the weights !! ! !  might be also computed by considering not only the 
observations at time t, t+24h, t-24h, t+48h, t-48h, … but also the observations (possibly 
weighted) within given time intervals [t+k24h+Δ, t+k24h-Δ]. 
 

3.2.5 On the choice of the weights !! 
The weights k! (with i=1,…,N) can be chosen as follows: if the i-th appliance/fixture changes 
its operating mode rarely over the time, than the time variation of the parameters x!

(!) t  
should be more penalized w.r.t. the time variation of the parameters characterizing an other 
appliance/fixture which frequently changes its operating mode. The weight k! can be then 
inversely proportional to the number of mode changes observed in the training dataset for the 
i-th appliance. 
 

3.2.6 On the choice of the tuning parameters !! and !! 
In order to tune the parameters γ! and γ!, a subset D!!of length !! !is extracted from the 
original training dataset D!!. The D!! is referred as calibration dataset. The values of γ! and 
γ! are then chosen through a cross-validation procedure, that is by minimizing (with a grid 
search) the Total Relative Mean Square Error (TRMSE) over the calibration dataset D!!, 
where the TRMSE is defined as 
  

!"#$% = y! t − y!(t) !!!
!!!

y!!!!
!!! (t)

!

!!!
 

The values of γ! and γ! leading to the minimum TRMSE are chosen. 
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3.3 FHMM and iSDTW based algorithm 

In addition to the previously explained algorithm, another computationally efficient algorithm 
for end use disaggregation was developed, as no a priori indications on which category of 
state-of-the-art literature was identified as best performing. The following novel algorithm is 
mainly based on Factorial Hidden Markov Models [Ghahramani97] and Subsequence 
Dynamic Time Warping and it is developed upon the following assumptions:  

• A3 Each water consuming device can be identified by its specific consumption 
pattern, i.e., each fixture has a typical “signature”;    

• A4 The consumption pattern of each water-using fixture can be roughly described 
with a limited number of states (e.g., state 1: fixture on/operating; state 2: fixture 
off/not operating). 

Operationally, the algorithm is developed and implemented into three steps:  
 

1. SIGNATURE IDENTIFICATION: the purpose of this step is to create a database 
containing the signature of each fixture contributing to the total consumption, each 
signature being a representative pattern of each appliance; 
 

2. FACTORIAL HIDDEN MARKOV MODEL (FHMM) TRAINING and 
DISAGGREGATION: the purpose of this step is to disaggregate, as a first rough 
stage, the aggregate consumption signal into the consumption trajectories of each 
fixture; 

 
3. ITERATIVE SUBSEQUENCE DYNAMIC TIME WARPING CORRECTION: the 

purpose of this third phase is to refine the disaggregation obtained by FHMM, with 
the goal of correcting wrong event detections and by increasing the accuracy of the 
modeled trajectories, based on the signatures identified during step 1. 

 
The description and the implementation details for each of the three steps listed above are 
given in the next paragraphs. 
 

3.3.1 Signature identification 
This preliminary step is performed in order to build a database of signatures, i.e., a database 
containing the typical consumption pattern of each of the fixtures contributing to the total 
consumption. For instance, Figure 2 provides examples of the signatures for two appliances. 
In order to do such an operation and gather all the needed signatures, the current version of 
the algorithm assumes that a training dataset !!!, consisting of the observations of the water 
consumption profiles of each appliance/fixture available in the house, is available (as the 
algorithm presented in Section 3.2 does).   
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In practical terms, the identification of signatures operates as follows:  

1. For each appliance contributing to the measured total consumption in the household, 
its consumption trajectory for the full training period is retrieved from training set !!!; 

2. The signature of the each considered fixture is built as the set of events for which the 
consumption trajectory of such a fixture in the training set shows that the fixture is 
operating  (on/open), i.e., the consumption is larger than 0 or than a given threshold 
(in order to disregard small measurement noises). 

The signature of each appliance ! will be from now on defined as !!, while the database 
containing all the signatures of the considered appliances will be specified by !.  
 

3.3.2 Factorial Hidden Markov Model training and disaggregation 
Factorial Hidden Markov Models (FHMM) [Ghahramani97] are a quite well established 
technique in machine learning and have already been applied in the field of data 
disaggregation, mainly within studies of energy disaggregation [Batra14], but a recent study 
also explored their application for water disaggregation purposes [Nguyen13]. In order to 
clarify the rationale behind such algorithms, it is relevant to make a couple of remarks 
regarding their terminology: 

• They are called Hidden Markov Model as they are used to identify the sequence of 
states a Markovian Process goes through, just based on the measured output of the 
system (therefore states are not visible and measurable, i.e., they are hidden). 

• Hidden Markov models are called Factorial when the considered system is 
composed of different components, such that the state of the whole system is the 
combination of the states of each component of the whole system. Figure 3 shows an 
example where the components of the system act independently from one another. 
In the case of water disaggregation, the state of the whole system, i.e., the 
household, is given by the combination of states of each fixture.  

 

Figure 2: Examples of energy consumption signatures for a fridge (left) and an air 
conditioner (right). 
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The FHMM component of the model hereby presents has a two-step operation, composed of 
a training phase and a testing phase. In detail, the implemented version of the model 
[Batra14] executes these two phases as follows:  

 
• TRAINING. During the training phase, only the data contained in dataset !!! are 

considered. The training phase consists in the calibration of the three elements 
characterizing hidden Markov models, namely: 

o The initial probability distribution ! !!!  for the states of each fixture !. It 
represents the probability of occurrency of each state (or operating mode 
j).  

o The transition probability distribution ! !!! !|!!!!!!  for the states of each 
appliance !. It represents the transition probability among the different 
operating modes of each appliance between time t and time t+1. The 
output of this phase is the so called transition matrix. 

o The emission probability distribution ! !!! !|!!!! ! for the states of each 
appliance !. It represents the probability of observing a particular output 
of the system depending on its operating state. The output of such a 
distribution is the so-called emission matrix.  

Further information behind the theory of such elements can be found in 
Ghahramani and Jordan, 1997. The training phase of the FHMM in the current 
model is performed according to the Baum-Welch algorithm [Rabiner89]. 

 
• DISAGGREGATION. Once the three probability distributions listed above (i.e., 

prior probabilities, transition matrix and emission matrix) are calibrated, FHMM 
can be applied to perform a first disaggregation of the aggregate data time 
series. In short, FHMM solves the following problem: 
 

!∗ !!! !|!!!!!! ,!∗ !!! !|!!!! = !"#$%!! !!!!|!!!!!! ,! !!!!|!!!!
!( |!! − !!|

!

!!!
) 

 
in order to find the most probable sequence of (hidden) states generating the 
measured output. In the algorithm here discussed, the Viterbi algorithm 
[Forney73] is used to find such a most probable sequence. 

 
 

Figure 3. Directed graph representing a system modeled with a Hidden Markov Model. 
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3.3.2.1 On the choice of the number of states for FHMM 

The implemented algorithm requires the user to give as an input parameter the number of 
operating states to consider for each fixture. In particular, the version of the algorithm 
presented here assumes that the number of states, or operating modes, is the same across 
all appliances. This is a relevant issue, as the choice of the number of states strongly affects 
the computational requirements of the algorithm, as the computational complexity grows 
exponentially with the number of states and the number of appliances. 
In turn, it is not easy to a-priori decide which number of states is suitable for describing the 
consumption pattern of different fixtures, as each fixture has its own consumption pattern 
and, as preliminary experiments show, the performance in detecting the operational state of 
an appliance does not monotonically increase with the number of states chosen for the 
FHMM. Figure 4 shows that the F-score [Batra14], obtained for the disaggregation of 
electricity consumption over four appliances, does not improve by imposing a higher number 
of states to the Markov Models. 

  

Figure 4: F-score obtained for the disaggregation of the consumption given by 4 
appliances (x-axis), with 2,3,4 or 7 Markov states. 

As a consequence, on the one hand the user would probably like to limit the number of 
states, in order save computational resources; on the other hand, limiting the number of 
states would cause a loss in the accuracy of the model. This means that either the user may 
choose to have a fast model with limited accuracy, or an accurate model unsustainable from 
the point of view of computational time (e.g., preliminary experiments show that high levels of 
accuracy might be reached only with a number of states in the order of 7-10 for each 
appliance, which means, for instance, that almost two days computational time are required 
to disaggregate one month of data measured at one minute resolution for a single household 
with four appliances). In order to increase the performance of traditional FHMM, without 
compromising their computational sustainability we introduced the iterative use of 
Subsequence Dynamic Time Warping as explained in the next paragraph. 

 

3.3.3 Iterative Subsequence Dynamic Time Warping correction 
Dynamic Time Warping (DTW) and Subsequence Dynamic Time Warping (SDTW) are well 
known pattern-matching techniques [Sakoe78]. DTW has already been used in combination 
with FHMM for water consumption data disaggregation [Nguyen13], with the objective of 
labelling those end uses that FHMM were not able to identify. For doing so, the similarity 
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between the so-called unclassified events with the signatures of a limited number of fixtures 
was evaluated, and the label relative to the fixture with the closest signature was assigned to 
the end use FHMM were not able to classify.  
In the novel approach proposed here, two main differences with respect to the previously 
mentioned study characterize the integration of Dynamic Time Warping as an automatic 
correction:  

• The first, and most important one is related to the final goal: DTW is iteratively 
applied with the goal of directly correcting the trajectories of end use 
consumption produced as output by FHMM. In fact, while real end use 
trajectories show pattern characterized by a certain variability, the trajectories 
produced as output by FHMM are piecewise constant as the number of states 
considered by FHMM is limited to avoid an increase in the computational burden.  

• The second one is related to a fundamental technical aspect: here DTW is 
applied as a Subsequence Dynamic Time Warping (SDTW) [Muller07], as the 
total consumption trajectory is first spitted in sequential events that are then 
compared to the signature of each fixture. Since the length of events is kept 
much shorter than the total length of the signature, the best matching sub-
sequence within the signature must be found, thus sub-sequence DTW must be 
used.  

 
More in details, the Iterative Subsequence Dynamic Time Warping (ISDTW) is integrated into 
the model works as follows: 

1. EVENT DEFINITION 
The total consumption trajectory and the single appliances trajectories produced 
by FHMM are split into events of equal length (10 minutes is the considered event 
length for the experiment described in the following section). 
 

2. FIXTURE RANKING 
For each event, appliances are ranked in descend order according to the values 
of the 90-th percentile of each of their FHMM trajectories within the event. This 
ranking gives an idea of the contribution each appliance has to the total event. 
 

3. ITERATIVE SUBSEQUENCE DTW CORRECTION 
Subsequence DTW between the total consumption in the considered event and 
each signature in the database is run. The following cases are then considered: 

a. If the closest signature is the one of the fixture ranked first at 
step 2, FHMM output is corrected with the values of the closest 
sequence of such signature: 
 
!!!"##$%&!!!"#$ = !! 
 

b. Else, if the closest signature is another, FHMM might have found 
a false event. In that case:  

i. If the appliance designed by FHMM was already 
operating in the previous three events (with a higher 
contribution than the one provided by the appliance with 
the closest signature), FHMM is not corrected: 
 
!!!"##$%&!!"!#$ = !!!"##,!"##$%&!!"!#$ 

 
ii. Else, the fixture identified by FHMM is switched off for 

the considered event and the process is repeated from 
step 2, considering all the signatures but the one of the 
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fixture just corrected: 
!!!"##$%&!!"!#$ = 0 

 
This third step is repeated for each fixture, for each event. 

 

3.3.4 Model specifications 
The model described in this section is implemented using Python language (v 2.7), starting 
from the state of the art toolkit (NILMTK) [Batra14] downloadable at (http://nilmtk.github.io/) 
and exploiting the following packages:  

• Anaconda (http://continuum.io/downloads): it is a free Python distribution 
including over 195 packages for science, math, engineering and data analysis 

• Sklearn (http://scikit-learn.org/stable/): it is a simple tool for data mining and data 
analysis. 

• Ucrdtw (https://github.com/klon/ucrdtw): it is a Python extension for highly 
optimized subsequence search using Dynamic Time Warping. 

 

3.4 Experiment setting 

Despite the SmartH2O project is focused on the water sector, the two algorithms presented in 
the previous paragraphs were initially tested and validated against energy consumption data 
mainly because (i) the state-of-the art literature on data disaggregation is more advanced in 
the energy sector, thus allowing with a fair comparisons against benchmark algorithms, and 
(ii) because a dataset of high-resolution residential water consumption data was not available 
in the initial phases of the project1. 

3.4.1 Dataset  
The AMPds dataset [Makonin13] is used to test the performance of the developed algorithms. 
The AMPds dataset is available online and it contains the energy consumption readings of a 
single house located in the Vancouver region in British Columbia, Canada. Specifically, 21 
breakers/loads have been sub-metered for an entire year (from April 1, 2012 to March 31, 
2013) at one minute read intervals. 
For the sake of analysis, we considered only the aggregate power consumption given by the 
sum of the power consumption readings of the following four electric appliances: 

• washing machine 
• fridge 
• dishwasher 
• heat pump 

 
These four appliances share the largest contribution of the total energy consumption both in 
Summer and in Winter, and they contribute at least for the 5% (Summer period) and 3% 
(Winter period) of the total energy consumption. 
 
Furthermore, in order to assess the robustness of the disaggregation algorithms w.r.t. a 
measurement noise which might corrupt the power readings, the aggregate power 
consumption signal !(!) has been corrupted by an additive zero-mean random Gaussian 
noise !(!) with standard deviation ! = 4 W. Note that, because of the added fictitious noise, 
the aggregate power consumption signal can become negative. At the time samples when 
this happens, the power consumption signal is set to 0 W. 
 
                                                        
1 High-resolution energy consumption datasets, such as the AMPds mentioned in 3.4.1, can be freely downloaded from the internet, 

while no high-resolution water consumption datasets are available. 
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The available AMPds dataset has been divided into two disjoint datasets: 
• A training dataset !!! containing the data for the days 16-30 June 2012, which was 

used for estimating the possible values of the FHMM states and the three FHMM 
probabilities distribution for the FHMM, described in section 3.3.2. The power 
readings from October 1, 2012 to November 30, 2012 were used instead as training 
set for the sparse optimization based algorithm described in Section 3.2. Such a 
training set is used to estimate the power demand of each appliance at each 
operating mode (i.e., the terms B!

(!)) as well as the weights !! !  and !!  through the 
procedure discussed in Sections 3.2.4 and 3.2.5. Furthermore, in order to tune the 
parameters γ! and γ! used in the optimization based algorithm, a calibration dataset 
!!!  has been extracted from the original training dataset !!! . Such a calibration 
dataset consists of the power readings from November 16, 2012 to November 30, 
2012. Note that the sub-metered power consumptions of each appliance are 
supposed to be available in the training and calibration phase. 

• The two algorithms were validated on a portion of dataset extracted from the 
Summer period and a portion from the Winter period, since we expect seasonality to 
impact on the consumption pattern of the different end uses. In particular, a validation 
dataset !!!, which consists of the aggregate power readings from July 1, 2012 to 
July 31, 2012 (plotted in Figure 5) was considered for the validation of the 
FHMM+iSDTW algorithm and the power readings from December 1, 2012 to 
December 31, 2012 (plotted in Figure 6) were taken into account for validating the 
algorithm based on sparse optimization. In the validation phase, the sub-metered 
power consumption measurements are not supposed to be available and the 
aggregate power consumption signal is decomposed into the power consumption of 
each appliance through the two proposed algorithms. The sub-metered power 
consumption measurements are only used to assess the performance of the 
developed algorithms. 

 

 

Figure 5: Electric power consumption from July 1, 2012 to July 31, 2012. 
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Figure 6: Electric power consumption from December 1, 2012 to December 31, 2012. 

 
 

3.4.2 Performance metrics 
The following metrics have been used to assess the performance of the developed 
disaggregation tools: 

• The Estimated Energy Fraction Index (EEFI), defined as: 

h! =
y! t ,!!

!!!
y! t!!

!!!
!
!!!

 

 
The index h! provides the fraction of energy assigned to the i-th appliance, and it 
should be compared to the Actual Energy Fraction Index (AEFI), defined as 
  !

h! =
y! t ,!!

!!!
y! t!!

!!!
!
!!!

 

 
which in turn provides the actual fraction of energy consumed by the i-th appliance. 

 
• The Relative Square Error (RMSE), defined as: 

RSE! =
y! t − y!(t) !!!

!!!
y!!!!

!!! (t)
 

 
The RSE provides a normalized measure of the difference between the actual and 
the estimated power consumption of the i-th appliance. 
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• The !! coefficient, defined for the i-th appliance as: 

!!! = 1 − y! t − y!(t) !!!
!!!

y! t − !! !!!
!!!

, 

 
with !!!denoting the mean of the power consumption, i.e.,  

!! =
1
T!

y! t
!!

!!!
 

The !! coefficient measures how well the estimated power profiles match the actual 
power profiles.  

 

3.5 Testing and validation 

The FHMM-DTW based algorithm and the sparse optimization based approach have been 
tested against the validation dataset !!!  (i.e., July 2012 and December 2012). The 
performance metrics introduced in Section 3.4 and the estimated disaggregate power profiles 
are computed in order to assess the performance of the algorithms. Specifically: 

• Table 2 shows the Estimated Energy Fraction Index h! !for each appliance, along with 
the Actual Energy Fraction Index h!; 

• Table 3 shows the Relative Square Errors for each appliance; 
• Table 4 shows the R! coefficient for each appliance. 
• Figure 7 shows the power consumption of each appliance obtained by using the 

FHMM-DTW based algorithm. For the sake of visualization only the power profiles at 
July 11, 2012 are plotted.   

• Figure 8 shows the power consumption of each appliance (at December 3, 2013, 
respectively) obtained by using the sparse optimization based approach. 

 

Table 2:  Fraction of energy assigned to each appliance (Estimated Energy Fraction 
Index !!) by the sparse optimization based algorithm and by the FHMM-ISDTW based 

approach, along with the actual fraction of power consumed by each appliance (Actual 
Energy Fraction Index !!). 

 July 2012 December 2012 
 FHMM-

ISDTW  
Actual Sparse 

optimization 
Actual 

Washing 
machine 

3.7 % 2.8 % 1.1 % 1.1 % 

Fridge 46.6 % 47.7 % 10.3 % 10.6 % 

Dishwasher 12.1 % 12.7 % 3.6 % 3.9 % 

Heat Pump 37.6 % 36.8 % 85.0% 84.4 % 
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Table 3: Relative Square Error obtained by the sparse optimization based algorithm 
and by the FHMM-ISDTW based approach. 

 July 
 2012 

December 
 2012 

FHMM-
ISDTW 

Sparse 
optimization 

Washing 
machine 

9.4 % 4.1 % 

Fridge 15.0 % 18.8 % 

Dishwasher 9.5 % 9.1 % 

Heat Pump 7.8 % 8.1 % 

  

 
 
 
 
 
 
 
 
 

Table 4: !! coefficient obtained by the sparse optimization based algorithm and by the 
FHMM-ISDTW based approach. 

 July 
 2012 

December 
 2012 

FHMM-
ISDTW 

Sparse 
optimization 

Washing 
machine 

5.4 % 95.1 % 

Fridge 90.3 % 78.2 % 

Dishwasher 80.8 % 90.1 % 

Heat Pump 91.2 % 91.1 % 
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3.6 Applications on water data 

Validation on water consumption data was possible only at a second stage of the project, as 
soon as a dataset containing high-resolution water consumption data for a small set of 
houses in New Zealand became accessible. The dataset, experiments settings and obtained 
results are described in the following paragraphs and discussed in comparison with those of 
experiments on energy data. 

3.6.1 Dataset 

The dataset considered for the initial testing of disaggregation algorithms on water data 
contains high-resolution water consumption data for a set of 7 households, which were 
metered during the 2006 WEEP (Water End Use and Efficiency Project) research 
[Heinrich07] in New Zealand. For the purpose of performing the first water disaggregation 
experiments, data from a single house metered for 68 days in the period 27th July – 2nd 
October 2006 were considered. Data for the following end-uses were available (listed here in 
descending consumption order):  

• toilet 
• tap 
• shower 
• bath 
• clothes-washer 
• dishwasher 
• garden 

Differently from the data available for energy disaggregation, the available raw water data 
required some additional pre-processing, as they did not represent end-use water 
consumption trajectories metered at a constant time resolution. In contrast, the following 
information was described by such data:  

• starting time of a water consuming event 
• ending time of the same event 
• cumulative volume of water used during the event 
• peak consumption rate within the event. 

Based on such data, the following operations were performed, in order to reproduce end-use 
consumption trajectories suitable to train and test the described disaggregation algorithms: 

1. given the starting time, ending time and total volume of consumption events, 
piecewise constant end-use consumption trajectories at 10-second sampling 
resolution were generated (i.e., trajectories where the consumption is always 0 but 
for those time windows in which consumption events happen). Such trajectories are 
piece-wise constant because consumption events are represented by a constant 
average consumption rate, which was evaluated dividing the total water volume by 
the event duration was considered; 

2. the generated trajectories were aggregated in time, in order to obtain end-use 
trajectories sampled at 1 minute resolution and allow for a consistent and fair 
comparison of the disaggregation algorithms performance between energy and water 
disaggregation, under same time sampling resolution. 

3.6.2 Experiment settings 

In order to proceed consistently with the energy disaggregation experiments, the available 
dataset was split as follows to run the first disaggregation algorithms: 

• the training dataset !!! consisted in 2-week data for the days 27th July – 10th August 
2006; 

• water consumption readings from August 11th, 2006 to September 9, 2006 were 
used instead as validation dataset.  
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In addition, the first experiment run on water consumption data considering and here reported 
considered the following settings:  

• considered appliances: toilet, tap and shower, being the ones most contributing to 
the total household consumption; 

• disaggregation algorithm: experiments were run using both the optimization-based 
algorithm and the FHMM-iSDTW approach.  

All other settings were set in compliance with the experiments on electricity data described in 
the previous section.  
Results from the first experiments are described in the next paragraphs. 
  

3.6.3 Results from disaggregation of high resolution data 

Disaggregation results on a 3-appliance experiment were evaluated according to the same 
performance metrics defined in 3.4.2 are reported and commented here. 
Table 5 reports the results in terms of algorithm accuracy in assigning the consumption share 
of the total to each end-use. As an aggregate consumption result, both of the algorithms 
show an acceptable performance in estimating the total contribution of each appliance: the 
maximum estimation error is around 6%. However two drawbacks can be noticed if 
comparing the result with the one obtained for energy disaggregation. The first is that both 
algorithms managed to estimate the fraction of energy assigned to each appliance with an 
error lower than 5%, in the applications on energy data. The second is that, even though the 
consumption share is estimated with an acceptable error, the ranking of actually most 
consuming appliances is not accurately detected.  
 

Table 5: Fraction of water assigned to each appliance (Estimated Water Fraction Index 
!!) by the optimization-based and the FHMM-ISDTW based algorithms, along with the 
actual fraction of water consumed by each appliance (Actual Water Fraction Index !!). 

 

 optimization-
based 

FHMM-
ISDTW  

Actual 

Toilet 30.6 % 29.2 % 34.4 % 

Tap 36.8 % 35.1 % 35.5 % 

Shower 32.5 % 35.7 % 30.1 % 

 
Performance results in terms of Relative Square Error and R2 score are reported in Table 6 
and Table 7. Considering that the disaggregation experiments only considered 3 appliances, 
the performance significantly decreases in terms of trajectories reproduction accuracy, if 
compared with the values obtained for electric power disaggregation.  
 

Table 6: Relative Square Errors obtained by the optimization-based and the FHMM-
ISDTW algorithms 

 optimization-
based 

FHMM-
ISDTW  
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Toilet 66.5 % 81.1 % 

Tap 74.7 % 69.2 % 

Shower 4.7 % 7.1 % 

 

Table 7:!!! coefficients obtained by the optimization-based and the FHMM-ISDTW 
algorithms 

 optimization-
based 

FHMM-
ISDTW  

Toilet 32.4 % -53.2 % 

Tap 23.9 % -63.0 % 

Shower 95.3 % 65.5 % 

 
In particular, it is noticeable that the only fixture for which both of the algorithms provide R2 
values larger than 50% is the shower. This gives us important hints on the reasons behind 
the overall performance decline. If we look at the actual consumption trajectories represented 
in Figure 9, the following causes can be supposed: 

• All appliances operate in a narrow and similar range (in absolute values, the 
operating range here is 0-30 litres/minute, while energy appliances operated between 
0 and few thousand kWh), which already represents a significant limit to appliance 
identification; 

• Tap and toilet show an irregular pattern and operate exactly in the same range. In 
contrast, shower events can be better distinguished, as they usually show a higher 
peak and larger durations. This is likely to be the reason why it is the only end-use for 
which RSE error is low and R2 higher than 60%. This is further confirmed by an 
additional performance metric, the F-score (defined as in [Batra14]), which provides a 
measure of the accuracy in detecting the on/off status of each appliance. Again, it 
shows (Table 8) that both of the algorithms achieves an accuracy of around 90% in 
detecting shower events, while tap and toilets events can hardly be detected. 

• Water consumption trajectories for tap and toilet events do not satisfy Assumption A2 
in Section 3.2. In fact, the disaggregated signals are not piecewise constant over a 
discrete-time scale with sampling time equal to 1 minute. This is the reason why the 
optimization-based algorithm shows poor performance in reconstructing the 
consumption trajectories for tap and toilet events. 

• Finally, given that the water consumption trajectories do not present a clear 
signature, the iSDTW module of the FHMM-iSDTW algorithm is likely to be not 
effective in correcting the FHMM results. 
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Table 8: F-score obtained by the optimization-based and the FHMM-ISDTW algorithms 

 optimization-
based 

FHMM-
ISDTW  

Toilet 59.2 % 52.4 % 

Tap 58.6 % 58.6 % 

Shower 62.2 % 89.9 % 

Figure 9. Example of water end-use trajectories for toilet, tap and shower end uses. 

 
As an overall comment to the presented results, it can be concluded that first results on water 
disaggregation look promising in terms of estimation of end-use contributions to total 
household consumption, but big improvements are needed to accurately reproduce end-use 
consumption trajectories. This represents so far an important result for the SmartH2O project, 
because end-use share information is suitable to understand where major consumptions are, 
to understand users’ consumption profiles and to enforce information and feedback sharing 
with customers. Yet, the obtained results and relative comments suggest for further 
investigations on water data disaggregation and intensive testing, in order to possibly achieve 
high disaggregation accuracy performances as the ones successfully obtained for energy 
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disaggregation. 

3.6.4 Results from disaggregation of 1-hour resolution data 

The experiment above was repeated using a resolution of one-hour instead of one minute, 
using otherwise the same dataset and experiment settings described in sections 3.6.2 and 
3.6.3. Due to the relatively short event lengths of the considered water appliances, it is not 
feasible to retrieve the end-use trajectories through disaggregating at this low resolution. 
However, it was found that FHMM-ISDTW approach provides better results in terms of 
estimating the total contribution of each appliance when compared to disaggregating at one-
minute sampled data. Moreover, due to the improvement of disaggregation performance with 
respect to the Estimated Water Fraction Index metric (i.e., the Estimated Energy Fraction 
Index applied to water data), we are able to disaggregate two more appliances, namely, the 
bath and the clothes washer. The same considerations do not hold when the optimization-
based approach is used. The obtained results are reported in Table 9. 

 
 

Table 9: Fraction of water assigned to each appliance (Estimated Water Fraction Index 
!!) by the optimization-based algorithm and the FHMM-ISDTW based approach, along 

with the actual fraction of water consumed by each appliance using one-hour 
resolution data (Actual Water Fraction Index !!). 

 optimization-
based 

FHMM-
ISDTW  

Actual 

Toilet 10.2 % 19.8 % 16.3 % 

Tap 14.7 % 19.2 % 17.8 % 

Shower 10.3 % 16.8 % 12.4 % 

Clothes 
washer 

60.5 % 39.0 % 46.0 % 

Bath 4.3 % 5.2 % 7.5 % 

 

These results are also shown graphically in Figure 10, which shows side by side, the 
percentage  
contribution pie charts from the actual data, and the one obtained after disaggregation. The 
missing slice of the pie chart to the right represents the portion of water consumption that was 
not accounted for, i.e. not assigned to any of the end-uses, by the disaggregation algorithm. It 
is equal to approximately 9%. As already mentioned, the Estimated Water Fraction Index 
metrics obtained by using the optimization-based approach do not accurately match the 
actual ones, and thus they are not visualized in Figure 10 (but only reported in Table 9). 
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Figure 10. Fraction of water assigned to each appliance (Estimated Water Fraction 
Index !!) by the FHMM-ISDTW based approach, along with the actual fraction of water 
consumed by each appliance using one-hour resolution data (Actual Water Fraction 

Index !!). 
 
Possible explanations behind the improvement in performance (of the FHMM-ISDTW 
approach) in contribution error when the resolution is lowered are: 

• Downsampling by averaging creates a smoother signal, which leads to better 
disaggregation. 

• Using a lower resolution for the same validation period reduces the size of the 
dataset, which lessens the likelihood of false positive detections. 

On the other hand, the poor performance of the optimization-based algorithm are probably 
due to fact that: 

• the information on time-of-day probability of the usage of each appliance/fixture 
(used to compute the weighting parameters weight !! ! !   as described in Section 
3.2.4) cannot be accurately inferred from low-resolution data. 

• the water consumption trajectories of the considered fixtures/appliances do not 
satisfy Assumption A2 in Section 3.2 (i.e., the actual disaggregated signals are not 
piecewise constant over a discrete-time scale with sampling time equal to 1 hour). 

 

3.7 Discussion 

The obtained results show that both the algorithms are able to accurately estimate the 
fraction of energy consumed by each appliance in the household (Table 2), and, most 
importantly, to extract single power consumption profiles (as shown in TablesTable 3 -Table 4 
and Figs. 7-8). The only exception is due to the estimation of power consumption of the 
washing machine through the FHHM-DTW algorithm (see Section 3.3), which, however, has 
marginal contribution in the considered period. 
In terms of computational complexity, the FHHM-ISDTW approach is less computationally 
demanding than the optimization based method. As a matter of fact, the time required by the 
FHHM-ISDTW method to disaggregate a one-month power signal is approximately 15 
minutes, while the optimization based method requires approximately 5 hours in 2.40-GHz 
Intel Pentium IV with 3 GB of RAM. !
Waiting for high resolution water data to be available for the SmartH2O project, ongoing 
research activities are focused on: 

• extensive testing of the algorithms’ generalization potential: 
(i) w.r.t. new, unseen appliances; 
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(ii) across different data sampling (i.e., 1s, 15 min, 1 h);   
• extensive comparison (in terms of computational complexity and accuracy) between 

the two developed disaggregation algorithms, along with a comparison with the state-
of-the-art disaggregation algorithms; 

Related to the application of the disaggregation algorithms to water data, we found that 
despite the reduction in precision with respect to energy, the algorithms we have developed 
are performing as well as, and even slightly better, than the state of the art ([Nguyen13]) that 
considers many appliances, but not overlapping and simultaneous events. 
It was also found that, although the optimization-based approach achieves better when high-
resolution data (i.e., 1 minute) are available, the FHMM-ISDTW algorithm achieves a good 
estimate of the breakdown structure of consumption data among end-uses with 1 hour 
resolution data. This is an important result, especially in the light that most smart meters 
operate at such a low resolution. The results of this disaggregation will be therefore 
particularly useful to provide feedback to the users about how they use their water. 
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4. SmartH2O user modeling algorithms 
Understanding the most relevant determinants of water consuming or saving behaviors at the 
household level is a fundamental step to build predictive models of urban water demand 
variability in space and time. By capturing the behavior of water users, these models allow 
identifying the variety of users’ consumption profiles as well as exploring the effects of 
different Water Demand Management Strategies for the residential sector, thus representing 
promising decision-aiding tools for water utilities and urban planners.  
 
This section illustrates a novel approach based on feature extraction techniques [Guyon03] to 
model the single-user consumption behavior at the household level. The approach is based 
on a two-step procedure: 
(i) identify the most relevant determinants of users’ consumption profiles;  
(ii) build a predictive model of water consumption profiles based on the observation of 

the determinants identified in step i.  
The use of feature selection (i.e., algorithms returning a subset of selected features) and 
feature weighting (i.e., algorithms ranking the features according to their relevance) is 
motivated by the need of managing a large number of potentially relevant factors influencing 
water consumers’ behaviors along with their redundancy and highly nonlinear relationships, 
which represent major challenges for standard cross-correlation analyses. Many state-of-the-
art studies reported about the presence of correlations between one or more presumed 
consumption drivers and the associated consumption profiles. Yet, the number of considered 
candidate variables is generally limited. In addition, the subsequent calibration, and validation 
of a user behavioral model based on the selected input/output is often missing, thus 
preventing the use of these tools as water demand predictors.   
 
This two-step procedure has been tested and validated on low-resolution (billed) data, as 
data on the SmartH2O project are not available yet. In particular, we worked on a dataset of 
low-resolution water consumption records associated with a variety of demographic and 
psychographic users data and household attributes collected in nine towns of the Pilbara and 
Kimberley Regions of Western Australia throughout the H2ome Smart project [Anda12].  
 
The Section is organized as follows: the next section introduces the procedure. Section 4.2 
describes the case study and Section 4.3 the numerical results. Section 4.4 summarizes the 
limitations of the proposed approach and identifies possible improvements to be implemented 
within the smartH2O project. 

4.1 Problem formulation 

The general formulation of a water demand predictive model for a generic user i is given by: 
!! = !(!!), 

where yi represents the consumption profile of the i-th user and xi is the set of M 
determinants influencing his/her behavior, represented by a variety of demographic and 
psychographic user features (e.g., age, number of house occupants, income level, 
conservation attitude, etc.), household attributes (e.g., house size, type, garden area, etc.) 
and exogenous factors (e.g., temperature, and precipitation, water price, etc.). The union of 
determinants and consumption data yields a sample dataset containing N tuples, one for 
each user. The i-th tuple (with i=1,…,N) is defined as follows: 
 

< !!!, !!!,… , !!! , !! > 
 
The construction of the water demand predictive model relies on the following two-step 
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procedure: 
1. Feature extraction, to select from the original dataset X of user’s data a subset !′ ⊆ ! 

of determinants that are relevant to describe the consumption profile Y; 
2. Model learning, that relates the previously generated subset X′ to the water 

consumption level Y. 
 

4.2 Feature extraction 

Feature extraction techniques, mostly developed in the data mining and machine learning 
research communities, represent promising tools to model residential water user behavior. 
These techniques allow extracting the more relevant determinants in describing the 
consumption profiles of water users out of a large set of candidate drivers. On the basis of 
the selected determinants, a behavioral model predicting the water consumption at the 
household level can be identified. 
 
Different approaches can be adopted to perform feature extraction. In particular, feature 
extraction techniques can be classified in two main categories: 

• Feature selection, namely algorithms that return a subset of features selected from 
the original dataset as the most relevant to describe the considered output variable 
(i.e., consumption profile); 

• Feature weighting, namely algorithms that rank all the features according to a 
measure of their relevance, with no actual selection of the most relevant variables, 
which however are identified as the ones in the first positions of the ranking. 

Since a-priori no single method is best suited to all datasets and modelling purposes, we 
implemented and applied different algorithms for both feature selection and weighting. In 
particular, we run the feature extraction algorithms described in the following paragraphs. 

4.2.1 Feature selection algorithms 

The following four different feature selection algorithms have been implemented: 
• Fast correlation based filter (FCBF) [Yu13]. This algorithm exploits the formulation 

of the Information Gain algorithm (explained in the next section about feature 
weighting algorithms), in order to keep into account both the feature-feature and the 
feature-class correlation, thus considering redundancy issues. The correlation 
between a feature Xi  and a class C is computed through the concept of symmetrical 
uncertainty (SU), which is defined as follows: 

•  

!"(!! ,!) = 2 !"(!! ,!)
! !! + !(!) 

 
where IG represents the information gain and H is the entropy of a variable (as 
defined later on).   

• CFS algorithm [Zhao10]. This filter algorithm uses a correlation-based heuristic to 
determine the relevance of a feature both in terms of feature-class correlation and 
feature-feature intercorrelation, thus avoiding redundancy issues. Given a subset of n 
features, the algorithm determines the “worth of the subset” and then explores 
different subsets in order to identify the one with the best merit.  

• BLOGREG algorithm [Guyon02]. This an embedded feature selection algorithm, 
which promotes the sparsity of a logistic model in order to reduce the number of 
features selected. The BLOGREG algorithm is suitable for managing categorical 
features. 

• Sparse Bayesian Multinomial Logistic Regression [Cawley07]. This algorithm is 
an extension of the BLOGREG approach. Making it suitable to be applied to 
multiclass problems. 
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4.2.2 Feature weighting algorithms 

The following feature weighting algorithms have been implemented: 
• CHI-Square Score [Liu95]. This is a supervised, filter algorithm used to test whether 

the class labels are independent of a specific feature. In particular, the chi-square 
score is evaluated as follows: 

χ! = (!!" − !!")!
!!"

!!"#$$

!!!

!

!!!
 

where:  
o !!" is the number of samples with the i-th value for a particular feature in 

class j. 
o !!" =

!∗!!!∗
! , with !!∗ being the number of elements with value i for a particular 

feature across all classes and !∗! being the number of elements in class j.  
The higher chi-square score, the more the class label is dependent on the 
considered features. The index is suitable to be applied also with categorical (or 
binary) variables.  

 
• Information Gain [Cover12].  Information gain is another measure of dependence 

between a feature and the class labels. Considering a feature Xi and the class labels 
C, the information gain is defined as:  
 
!" !! ,! = ! !! + !(!!|!) 
 
Where H represents the entropy of a variable, defined as:  
 

! !! = − ! !! !"#! ! !!
!

 

H X! C = − P y! P x!|y! log! P x!|y!
!!

 

As the maximum value that the information gain can take is 1, the closer the 
information gain of a feature is to 1, the more relevant the feature is. 
 

It is worth mentioning that both the chi-square score and the information gain algorithms 
consider each feature separately, thus they do not solve redundancy issues. 
 

4.3 Model learning  

As far as the model learning phase is concerned, in principle any data-driven modeling 
approach (regressor or classifiers) can be used to build a user behavioural model (see 
[Maier00], [Maier10], [Galelli13]). In practice, the selected method should have the following 
desirable features:  
(i) modeling flexibility to approximate strongly non-linear functions, particularly because 

the relationships between the candidate inputs (selected features) and the output 
(consumption profile) is completely unknown a priori;  

(ii) computational efficiency to deal with potentially large datasets, when considering 
large number of users; 

(iii) scalability with respect to the number of candidate variables to be analyzed, due to 
the need of testing several variables with different domains and variability.  
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The following two data-driven modeling approaches have been implemented: 
• Naive Bayesian Regression. Bayesian classifiers [Duda and Hart, 1973] learn 

from training data the conditional probability of each attribute, given the class 
label. Classification is then performed by computing the probability of each class, 
given an instance of the attributes and predicting the class with the highest 
posterior probability. 

 
• J48 Decision Tree algorithm. The J48 algorithm used here is an 

implementation of the C4.5 algorithm used to generate a decision tree [Ross 
Quinlan, 1993]. It builds a decision tree on the training dataset, where the 
attributes that most effectively split the set of samples into small subsets, in 
terms of information gain, are positioned onto nodes. 

 

4.4 Experiment setting 

4.4.1 Case study description 

The H2ome Smart project dataset [Anda12] was then used to assess the performance of the 
proposed modeling technique. The following data are available, for more than 3000 
households in the towns of the Pilbara and Kimberley Regions of Western Australia: 

• Water consumption rate: household water consumption data from meter readings 
(measured in m3), collected between August 2010 and February 2012 (19 months). 
The maximum number of readings per household, within the considered period, is 
seven, thus the best reading resolution is approximately three months; 

• House and occupants attributes: 26 variables describing different features of the 
users and the house. Table 10 reports the complete list of available data. 
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Table 10: Customer and household features considered in this study. 
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4.4.2 Data pre-processing 

The following data pre-processing steps have been carried out before applying the feature 
extraction algorithms. 
 
Data cleaning 

1. records of users showing data inconsistencies or missing data (i.e., negative 
consumption rate or no consumption rate measures) were removed from the dataset; 

2. empty reading date fields were filled for as many users as possible with the reading 
dates of the same accounting reading group; 

3. the average daily water consumption rate in [m3/day] was computed for each 
household from water consumption data and reading dates, since the number of 
water consumption readings and the length of reading period was very 
heterogeneous among different households; 

4. if the information about the number of house occupants is present, the per-capita 
daily water consumption rate in [m3/day] is computed. 
 

The data cleaning process produced the following outputs: a set Y1 containing the daily 
average water consumption rate for N = 3325 households (users) and a set Y2 containing the 
per-capita daily average consumption for N’ = 3197 households (users). 
 
 
Class label assignment 
The real values in Y1 and Y2 were converted into the following classes representing different 
consumption profiles:  

• low-consumers when the user consumption is lower (or equal) than the 25th 
percentile value;  

• high-consumers when it is higher than the 75th percentile value; 
• medium-consumers for the ones between 25th and 75th percentiles. 

 
Matrix of user features 
Two sample datasets X1 and X2 were built, respectively for the users whose consumption is 
included in Y1 (daily average water consumption) and Y2 (daily average per-capita water 
consumption). Each tuple of the datasets has M = 26 user and house features (see Table 10) 
associated to either Y1 or Y2. 

4.5 Testing and validation 

4.5.1 Feature selection and feature weighting 

The outputs from the feature selection algorithms are represented in Figure 11 (daily average 
water consumption) and Figure 12 (per-capita daily average water consumption), where the 
user and house features are represented on the y-axis and the color that indicates the 
selection frequency of each feature: white colored features are the most relevant as they 
always selected across the different algorithms runs, while their relevance decreases moving 
towards gray and black tones.  
 
The results of Figure 11 and Figure 12 appear to be quite consistent: the number of 
household’s occupants seems to be the most important factor of residential water 
consumption; the number of toilets, the method used for irrigation, the presence of pool and 
the type of house are then ranked in the subsequent positions with high frequency (i.e., 80%); 
the town is also considered relevant in explaining the per-capita daily water consumption. 
However, the selection frequencies in this second experiment are lower than 70%, except for 
the number of occupants, which is always selected in the first position. 
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Figure 11: Selection frequency obtained considering as output the daily average water 
consumption. 

 

 

Figure 12: Selection frequency obtained considering as output the per-capita daily 
average consumption. 

 

Figure 13 and Figure 14 show the results obtained running the feature weighting algorithms 
on X1 and X2, respectively. Again, the features are reported on the y-axis, while the x-axis 
represents different algorithm runs. Colors represent the positions of each feature in the 
weighting ranking: features with white color were given higher weights by the algorithms, 
meaning they are considered as relevant in explaining the output variable, while darker 
features are associated to lower weights (i.e., less relevant). 
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Figure 13: Weighting ranking considering as output the daily average consumption. 

 

 

Figure 14: Weighting ranking considering as output the per-capita daily average 
consumption. 

The two feature weighting algorithms produce consistent results, which are also consistent 
with the ones obtained by the feature selection algorithms, thus suggesting clear and strong 
relationships between the extracted features and the corresponding water consumption 
profiles. 
 

4.5.2 Interpretation of the feature extraction results  

The set of features extracted in the previous section has been analyzed to better understand 
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the underlying relationships between them and the water consumption profiles. 
 
OCCUPANTS  
The first considered feature is the number of occupants of the house, as it was always ranked 
in the first position by all the implemented feature extraction algorithms. As expected, Figure 
15 shows that the daily water consumption increases with the number of occupants. Yet, the 
per-capita consumption decreases as the number of household’s occupants increases. The 
reason for this behavior can be double:  

1) some end-uses represent a sort of fixed-cost, which is shared among the occupants. 
For example, the water used for irrigation or in a pool is shared among the occupants 
and, therefore, the individual cost (i.e., consumption) decreases for increasing 
number of inhabitants; 

2) when the number of household’s occupants increases, some kind of economies of 
scale and social pressure are developed. As a consequence, water use is better 
balanced among the inhabitants and wastes are less frequent. 

 

Figure 15: Median daily water consumption and median per-capita daily water 
consumption for houses with different number of occupants. 

 

 
TOILET NUMBER  
Considering now the number of toilets (see Figure 16) both the average daily and average 
daily per-capita water consumption level increase with the number of toilets in the house. 
Since the number of toilets generally increases with the number of household’s occupants, it 
is reasonable that the daily water consumption increases with the number of toilets as well. In 
contrast with the previous case, in this case the per-capita consumption increases, probably 
because with a higher number of toilets there is less “competition” for using the resources 
(i.e., the toilet). 
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Figure 16: Median daily water consumption and median per-capita daily water 
consumption for houses with different number of toilets. 

 

 
HOUSE TYPE  
Figure 17 shows how the consumption level increases with the size of the house. This 
phenomenon can be probably explained as bigger houses generally are occupied by a higher 
number of inhabitants and, also, they have a higher number of toilets. The per-capita water 
consumption flattens for the reasons previously discussed about number of occupants and 
associated consumption. 

 

Figure 17: Median daily water consumption and median per-capita daily water 
consumption for different types of house. 

 
IRRIGATION  
The relationship between water consumption and the type of irrigation is shown in Figure 18. 
Households where irrigation is performed by hand consume (on average) less water than 
those houses where irrigation is performed with automatic irrigation systems or both by hand 
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and automatically. This evidence can be explained by relating the water consumption levels 
to the area of the garden to be irrigated (bottom part of the figure). Houses equipped with 
automatic irrigation systems generally have a wide garden and high water consumption for 
irrigation. On the contrary, small gardens are irrigated by hand, resulting in a lower 
consumption. Reasonably, in houses with a medium-size garden and medium consumption 
levels, irrigation can be either manual or automatic.  
 

 

Figure 18: Median daily water consumption and median per-capita daily water 
consumption for different types of irrigation systems. 

 

4.5.3 Forecasting user consumption profile 

The second step of our procedure aims at identifying a model having the features extracted in 
the previous section as input, and the predicted water consumption profile of the users as 
output. Such a model allows water utilities and municipalities to quantitatively assess the 
effectiveness of future water demand management strategies.  
 
Working on low-resolution consumption data, our model allows classifying users to the three 
consumption profiles introduced in Section 4.2.2, namely low-, medium-, and high-
consumers.Among the available data-driven modeling methods, we employed naive 
Bayesian Regressor and Decision Tree classifiers, which are particularly suitable for these 
classification experiments. In order to minimize the risk of overfitting the model over the 
calibration data, we run a k-fold cross-validation by randomly splitting the dataset into k 
mutually exclusive subsets of equivalent size. Each time the predictive model is validated on 
one of the k folds and calibrated using the remaining k–1 folds, on which the feature 
extraction algorithms are run. Figures 17-20 report the resulting average model accuracy 
across the k-fold cross-validation, measured in terms of percentage of correct assignments of 
users on the basis of their features to their actual consumption profile. Results show that both 
the models allow attaining a sufficiently good accuracy in predicting the consumption profiles 
of the users. The proposed method shows the potential to effectively capture urban water 
demand variability with respect to users psychographics and house characteristics data, thus 
representing promising decision-aiding tools for water utilities and urban planners. 
 
The final model accuracy might improve when moving from low-resolution billed data on 
water consumption to high-resolution smart-metered data, as they would allow the definition 
of more detailed user profiles on the basis of the disaggregated end-use patterns. However, 
the underlying relationships between users’ features and end-use patterns are likely more 
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complex and, consequently, the effectiveness of the proposed approach should be further 
tested and validated. Finally, since the users’ psychographics and the house characteristics 
were collected via survey with no guarantees that all the relevant determinants of users’ 
behaviors are observed, the entire user profiling process would benefit from the use of 
alternative methods for a direct interaction with the users for data gathering. 
 
 

Table 11: Classifier models accuracy on daily household water demand prediction. 
Feature 
selection 
algorithm 

Bayes Naive accuracy (mean and standard 
deviation) over three runs [%] 

J48 tree accuracy (mean and 
standard deviation) over three runs 

[%] 
FCBF 0.51±0.03 0.51±0.03 
CFS 0.51±0.01 0.49±0.02 
BLOGREG 0.50±0.03 0.48±0.03 
SBMLR 0.51±0.02 0.49±0.00 
 
 

 

Figure 19: Classifier models accuracy on daily household water demand prediction, 
considering Chi2 feature weighting algorithm. 
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Figure 20: Classifier models accuracy on daily household water demand prediction, 
considering Infogain feature weighting  algorithm. 

 
 

Table 12: Classifier models accuracy on per-capita daily household water demand 
prediction. 

Feature 
selection 
algorithm 

Bayes Naive accuracy (mean and standard 
deviation) over three runs [%] 

J48 tree accuracy (mean and 
standard deviation) over three runs 

[%] 
FCBF 0.56±0.02 0.54±0.00 
CFS 0.56±0.02 0.54±0.00 
BLOGREG 0.55±0.02 0.53±0.00 
SBMLR 0.56±0.02 0.52±0.01 
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Figure 21: Classifier models accuracy on per-capita daily household water demand 
prediction, considering Chi2 feature weighting  outputs. 

 

 

Figure 22: Classifier models accuracy on per-capita daily household water demand 
prediction, considering Infogain feature weighting  outputs. 

 
 
 
 



  

SmartH2O – First user behaviour models Page 48 Version 2.1 

5. Conclusions and follow-up 
 
In this deliverable, a set of algorithms for data-driven modelling of the user behaviour have 
been presented. Specifically: 

• Two novel algorithms for water end use characterization developed in the SmartH2O 
project have been described; 

• Several machine learning and data-mining algorithms have been applied to build 
user behavioural models from low-resolution water consumption data. 

The models of user behaviour derived through the proposed algorithm will be implemented in 
the SmartH2O platform. Through the SmartH2O platform, the water utility can visualize the 
water consumption of each customer at a fixture/appliance level, in order to identify 
consumption patterns and trends, and thus identifying the most promising areas where 
conservation efforts may be polarized. Furthermore, the water utility can foresee the 
consumer behavior in front of exogenous variables (climate), social awareness campaigns, 
social pressure, water restrictions, etc.  
 
Next steps within WP3 will be: 

• Testing the water end use characterization algorithms and the user modelling 
algorithms against high resolution water consumption data provided by the water 
utilities taking part at the SmartH2O project (i.e., Thames Water and SES); 

• The development of an agent based model that, by combing the single user 
behavioural models and a set of rules describing the social interaction among the 
consumers, allows the water utility to simulate whole districts of users and to 
understand how some user types (leaders/influencers) can stimulate a behavioural 
change on other users. 
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